图 1. (A) 起始 DNA 序列,其中包含目标碱基对 (A:T)。(B) 腺嘌呤碱基编辑器 (ABE) 由进化的 TadA* 脱氨酶 (淡紫色) 和部分失活的 CRISPR-Cas 酶 (灰色) 组成。碱基编辑器与与向导 RNA (洋红色) 互补的目标序列结合,并暴露一段单链 DNA。(C) 脱氨酶将目标腺嘌呤转化为肌苷 (DNA 聚合酶将其读取为鸟嘌呤),Cas 酶切口 (▲) 另一条链。(D) 切口链被修复,完成从 A:T 到 G:C 碱基对的转换。
胶质母细胞瘤(GBM)是胶质瘤最具侵略性的形式,也是中枢神经系统的常见原发性肿瘤,占神经胶质瘤的约50%,中位寿命为诊断为15个月。GBM被归类为稀有癌症(年度发病率1/33.330个个体),并且由于其异质微环境代表了手术切除后的治疗逃生和复发性的战略网络,因此在脑肿瘤中尤其具有挑战性。目前,复发性GBM尚无巩固治疗。在这种情况下,细胞之间的通信在GBM耐药性中起关键作用:更具体地说,GBM细胞形成隧道纳米管(TNT),可能参与肿瘤进展和复发。TNT是基于肌动蛋白的高动力膜突起,使细胞能够在长距离上直接互动,并在癌症进展和恶性肿瘤中起着核心作用。与TNTS形成有关的蛋白质之一是RALGPS2 RAS依赖性的鸟嘌呤核苷酸交换因子(GEF)的Rala GTPase,其在G523NS患者衍生的GBM细胞系中的敲低会影响细胞的增殖。该项目旨在研究TDARK RALGSP2的潜在作用,Tdark Ralgsp2是RALA GTPASE,在GB发病机理和/或进展中的RAS无依赖性鸟嘌呤核苷酸交换因子(GEF)。实际上,Ralgps2似乎参与了GB细胞中细胞增殖和运动性的调节。从拟议的研究中得出的结果将有助于更好地了解这种罕见疾病的未知方面,并确定未来药物设计的新目标。
脱氧核糖核酸 (DNA) 的化学成分是通过共价键连接在一起的核苷酸,形成长链。这些核苷酸由一种称为脱氧核糖的 5 碳糖、一个磷酸基团和一个含氮的含氮碱基组成。含氮碱基有四种:腺嘌呤、胸腺嘧啶、鸟嘌呤和胞嘧啶。核苷酸与一个分子的糖和另一个分子的磷酸共价结合。学生将描述和标记 DNA 的结构,包括核苷酸的组成和含氮碱基的配对。他们还将了解 DNA 分子的双螺旋形状以及磷酸基团和糖基团在其形成中的作用。
如果腺嘌呤是原始链中的下一个暴露基础,则会添加胸腺核苷酸,如果胞嘧啶是原始链的下一个暴露基碱,则会添加鸟嘌呤核苷酸,并且仅根据与新的粘合物的规定,将鸟嘌呤核苷酸添加到新的基本链条之间,仅将基本构成形式添加到新的链接之间,如果构成的规则,则仅在水中构成了构成的规则。因此,新的DNA分子保留了一半的母体DNA,然后使用它来创建一个新的女儿链DNA复制在多细胞生物中很重要,原因是:
如果腺嘌呤是原始链中的下一个暴露基础,则会添加胸腺核苷酸,如果胞嘧啶是原始链的下一个暴露基碱,则会添加鸟嘌呤核苷酸,并且仅根据与新的粘合物的规定,将鸟嘌呤核苷酸添加到新的基本链条之间,仅将基本构成形式添加到新的链接之间,如果构成的规则,则仅在水中构成了构成的规则。因此,新的DNA分子保留了一半的母体DNA,然后使用它来创建一个新的女儿链DNA复制在多细胞生物中很重要,原因是:
DNA 中的信息被编码在以侧链形式固定在脱氧核糖磷酸聚合物骨架上的碱基序列中。腺嘌呤-胸腺嘧啶和鸟嘌呤-胞嘧啶成对碱基残基之间的双氢键和三氢键使互补 DNA 序列能够选择性地自组装,从而产生以四碱基编码的分子梯状结构。1 由于这种序列选择性自组装,DNA 已成为一种多功能的纳米结构介质,在热熔化和退火后,设计的 DNA 链混合物可以杂交以提供复杂的多维结构。2–4 然而,尽管基于 DNA 的纳米技术取得了成功,但对链间氢键和糖磷酸骨架的依赖可能会损害所得结构的机械、热和化学稳定性。5,6
DNA中的氮基碱包括腺嘌呤,鸟嘌呤和胞嘧啶,而RNA含有尿嘧啶而不是胸腺素。解旋启动DNA合成,而聚合酶是负责通过在生长链中添加核苷酸来复制DNA的主要酶。DNA的糖磷酸主链由磷酸二酯键一起保持。一个称为复制起源的特定序列是染色体上DNA合成的起点。DNA的双螺旋结构具有主要和次要凹槽,这对于其功能很重要。双螺旋的每个转弯都有这些凹槽,从而允许复制过程发生。在DNA复制过程中,氮基碱的正确配对对于维持遗传信息的完整性至关重要。此过程发生在细胞分裂之前,涉及DNA双螺旋的放松形成两个模板链。领先链是连续合成的,而滞后链则形成短片段,然后通过连接酶将其连接在一起。在复制位点形成Y形结构是过程中的重要一步。RNA或DNA的引物序列是DNA合成的模板,并且在复制完成后必须去除这些引物。参与DNA复制的键酶包括解旋酶,聚合酶和连接酶。旋转酶放松双螺旋,而聚合酶为生长链增添核苷酸。连接酶将滞后链的短片段连接在一起。连接5'和3'时,会形成磷酸酯主链。与DNA复制有关的一些重要术语包括前导链,滞后链,复制的起源和滑动夹具蛋白。DNA复制过程对于忠实地从一代细胞到下一个细胞的遗传信息传播至关重要。仅在RNA中发现的化合物被称为** uracil **,而** okazaki碎片**请参阅滞后链上的短段或片段。DNA的基本三维形状是A **双螺旋**结构,而RNA是单链,不稳定的,并且可以离开细胞核。基因由DNA组成,代表遗传的基本物理和功能单位。通过破坏弱氢键解解酶的酶称为**解旋酶**。平行但在相反方向的两个侧面称为**反平行**。嘧啶由单个碳环组成,而核苷酸由磷酸盐,糖和氮碱组成。DNA是双链,稳定的,并且保持在核内。根据夏尔加夫的统治,鸟嘌呤总是与胞嘧啶配对。核糖是RNA核苷酸中发现的糖,而脱氧核糖是DNA核苷酸中存在的5-碳糖。氢键将DNA的两条链组合在一起,** primase **是负责放下RNA底漆的酶。互补意味着一侧可以与另一侧配对或补充另一侧。由重复核苷酸制成的长聚合物称为DNA。五个氮基是腺嘌呤,鸟嘌呤,胸腺嘧啶,胞嘧啶和尿嘧啶。双螺旋的“主链”是磷酸骨架。** DNA聚合酶**是促催化DNA分子合成的酶中的一种酶。嘧啶衍生物包括三个氮基碱 - 尿嘧啶,胸腺嘧啶和胞嘧啶 - 它们是DNA和RNA的基础。复制涉及半守则复制,其中双螺旋分裂为两个不同的链。嘌呤分子由四个氮原子和六个碳原子组成。嘧啶由一个六元环和两个氮原子和四个碳原子组成。核苷酸是DNA和RNA的构件。** DNA解旋酶**是一种在DNA复制中起重要作用的酶,而氢键在解螺旋酶放松时会破裂。这是文本的重写版本:** DNA结构** DNA的基本构件是由重复核苷酸组成的长聚合物。这些氮碱分为两个主要群体:嘌呤(腺嘌呤,鸟嘌呤)和嘧啶(胸腺胺,胞嘧啶,尿嘧啶)。酶,例如DNA聚合酶,促进了DNA分子的合成。**复制过程**在半守保持复制期间,双螺旋分裂为两个单独的链。这些链充当新DNA合成的模板。该双螺旋的“骨干”由磷酸盐组组成。**核苷酸特征**嘌呤(例如腺嘌呤和鸟嘌呤)由一个六元环组成,带有四个氮原子和六个碳原子,而嘧啶(例如胸腺胺和细胞儿童)具有两个六氮环,具有两个六氮气,带有两个硝基原子和四个碳原子的环。核苷酸是DNA和RNA的基本单位。**涉及的酶** DNA解旋酶通过放开双螺旋在复制过程中起着至关重要的作用,这最终导致链分离。**氢键**作为解旋酶放松DNA链,核苷酸之间的氢键被损坏,从而使链分开。
核酸或蛋白质的分离,基于其大小和电荷,通过测量凝胶中电场的运动速率。基因是由DNA中特定核苷酸序列组成的遗传信息的离散单位(或某些病毒中的RNA)。鸟嘌呤是核酸的成分,它在细胞中带有DNA和RNA中的遗传信息。化学,它是嘌呤基础。螺旋形式螺旋形。模拟一种简化的版本,用于分析和解决问题或做出预测的复杂事物。核苷酸一个DNA的构建块,该块由五碳糖共价键与氮基碱和磷酸基团组成。限制酶
一类DNA折叠/结构统称为G-四链体(G4),通常在鸟嘌呤富基因组的区域中形成。G4 DNA被认为在基因转录和端粒介导的端粒维持中具有功能作用,因此是药物的靶标。导致鸟嘌呤四局部堆叠的分子相互作用的细节并不理解,这限制了G4序列的可药用性的合理方法。为了进一步探索这些相互作用,我们采用了电子振动 - 二维红外线(EVV 2DIR)光谱法,以测量由MyC2345核苷酸序列形成的平行链链G- Qu-Qu-Qu-Qu-Qubadruplex DNA的扩展振动偶联光谱。我们还跟踪了与G4折叠相关的结构变化,该变化是K + -ION浓度的函数,以产生进一步的见解。为了对折叠过程在振动耦合特性方面产生的结构元素进行分类,我们使用了使用密度功能理论的量子化学计算。这导致了与给定结构相关的耦合光谱的预测,这些耦合光谱与从EVV 2 -DIR光谱获得的实验耦合数据进行了比较。总体而言,在折叠过程中对102个耦合峰进行了实验鉴定并遵循。注意到了许多现象,并与折叠形式的形成相关。这包括频率变化,交叉强度的变化以及新耦合峰的出现。可以将新峰分配给复合物中特定化学基团之间的耦合,我们使用2DIR数据在我们的实验条件下为这种特定类型的G4提出了折叠序列。总体而言,实验2DIR数据和DFT计算的组合表明,在添加钾离子之前,在初始DNA中可能已经存在鸟嘌呤四重奏,但是这些四重奏是未储存的,直到添加钾离子为止,在这一点上形成了完整的G4结构。
和RNA仅由四个不同的核苷酸组成。所有核苷酸都有一个共同的结构:由磷酸盐键连接到戊糖(五碳糖分子)的磷酸基团,而磷酸盐又与有机碱有关。在RNA中,五肠结是核糖;在DNA中,它是脱氧核糖。 DNA和RNA核苷酸的唯一其他差异是,这两个有机碱基之一之间的一个不同。 在DNA和RNA中都发现了碱,鸟嘌呤和胞嘧啶。胸骨仅在DNA中发现,尿嘧啶仅在RNA中发现。 基础通常分别缩写为A,G,C,T和U。 为方便起见,当将长核苷酸序列写出时,也会使用单个字母。在RNA中,五肠结是核糖;在DNA中,它是脱氧核糖。DNA和RNA核苷酸的唯一其他差异是,这两个有机碱基之一之间的一个不同。在DNA和RNA中都发现了碱,鸟嘌呤和胞嘧啶。胸骨仅在DNA中发现,尿嘧啶仅在RNA中发现。基础通常分别缩写为A,G,C,T和U。为方便起见,当将长核苷酸序列写出时,也会使用单个字母。