I. 引言 DNA 分子具有高密度和长期稳定性,因此成为存档海量信息的一种有前途的解决方案。传统数字存储介质(如硬盘和磁带)受限于物理尺寸,且易随时间推移而退化。相比之下,DNA(生物体中携带遗传信息的分子)则为数据存储提供了一种紧凑而耐用的介质。多项开创性研究已证明这一潜力 [1]–[4]。在传统的 DNA 数据存储系统中,二进制数据被编码为四种 DNA 碱基序列:腺嘌呤 (A)、胞嘧啶 (C)、鸟嘌呤 (G) 和胸腺嘧啶 (T)。然后,这些序列通过 DNA 合成的生化过程合成 DNA 分子,称为链。合成的链被集体储存在一个管子里,或封装在二氧化硅颗粒中,在适当的条件下,它们可以保持数千年的稳定 [5]。为了检索存储的二进制数据,需要使用 DNA 测序技术读取 DNA 链,该技术可以确定 DNA 分子中碱基的顺序。然后将测序数据解码回其原始二进制形式。然而,使用 DNA 存储和检索数据的过程并非没有挑战。一个重大问题是 DNA 合成、存储和测序过程中会出现错误。这些错误可能包括替换、插入、删除,尤其是链断裂。当 DNA 分子被切割成两个或多个片段时,就会发生链断裂,这会使准确重建原始数据的过程变得复杂。多项研究 [6]–[8] 已经探讨了纠正传统 DNA 数据存储通道中断裂的问题,这些研究提出了各种编码方案来减轻此类错误的影响。
DNA和RNA世界:1。在门德尔(Mendel)之后的几年中,研究了遗传物质的性质,从而意识到DNA是大多数生物中的遗传物质。2。脱氧核糖核酸(DNA)和核糖核酸(RNA)是活体系中发现的两种核酸。核酸是核苷酸的聚合物。3。DNA在大多数生物体中充当遗传物质,而RNA在某些病毒中充当遗传物质。4。RNA主要用作Messenger。RNA具有其他功能作为衔接子,结构或催化分子。 5。 多核苷酸链的结构(i)核苷酸具有三个部分,即 氮基,五糖糖(DNA中的脱氧核糖,RNA中的核糖)和磷酸基团。 (ii)氮碱是嘌呤,即 腺嘌呤,鸟嘌呤和嘧啶,即 胞嘧啶,尿嘧啶和胸腺嘧啶。 (iii)胞嘧啶在DNA和胸腺氨酸中都存在于DNA中。 尿嘧啶存在于胸腺嘧啶位置的RNA中。 (iv)氮基碱通过N-糖苷键连接到五糖糖,形成核苷,即 腺苷和鸟嘌呤等。 (v)当磷酸基团通过磷酸二酯键连接到核苷的5' - OH时,形成了相应的核苷酸。 (vi)两个核苷酸通过3' - > 5'磷酸二酯键连接以形成二核苷酸。 (vii)可以连接几个核苷酸以形成多核苷酸链。 (x)基碱对彼此互补。RNA具有其他功能作为衔接子,结构或催化分子。5。多核苷酸链的结构(i)核苷酸具有三个部分,即氮基,五糖糖(DNA中的脱氧核糖,RNA中的核糖)和磷酸基团。(ii)氮碱是嘌呤,即腺嘌呤,鸟嘌呤和嘧啶,即胞嘧啶,尿嘧啶和胸腺嘧啶。(iii)胞嘧啶在DNA和胸腺氨酸中都存在于DNA中。尿嘧啶存在于胸腺嘧啶位置的RNA中。(iv)氮基碱通过N-糖苷键连接到五糖糖,形成核苷,即腺苷和鸟嘌呤等。(v)当磷酸基团通过磷酸二酯键连接到核苷的5' - OH时,形成了相应的核苷酸。(vi)两个核苷酸通过3' - > 5'磷酸二酯键连接以形成二核苷酸。(vii)可以连接几个核苷酸以形成多核苷酸链。(x)基碱对彼此互补。(viii)多核苷酸链中的主链由于糖和磷酸盐而形成。(ix)与主链糖部分相关的氮基碱基。6。在RNA的情况下,每个核苷酸残基都有一个额外的OH组,核糖中的2位位于核糖中。另外,在胸腺氨酸(5-甲基尿嘧啶)的位置也发现了尿嘧啶。
DNA 分子为蛋白质生产提供信息,这对于维持生命的过程和细胞繁殖至关重要。就像一本书一样,DNA 具有可以分解成字母以传达特定指令的部分和代码。这些指令以信使 RNA (mRNA) 的语言编写,信使 RNA 与 DNA 结合以制作基因的 RNA 副本。mRNA 通过找到由氮碱基编码的起始点序列或“单词”来“读取”DNA。该过程被组织成基因,起始序列作为章节页面。然后,mRNA 链离开细胞核并前往细胞质,在那里通过涉及转移 RNA (tRNA) 分子的过程将其翻译成蛋白质。DNA 可以比作一个信息库,其中以编码格式存储蛋白质合成的指令。遗传物质被组织成称为基因的部分或“章节”,其中包含生产蛋白质的必要代码,这些蛋白质可执行维持生命的过程并为细胞繁殖提供必需的化合物。这些基因由氮碱基腺嘌呤 (A)、鸟嘌呤 (G)、胞嘧啶 (C) 和胸腺嘧啶 (T) 组成,它们按特定顺序排列,以传达特定的信息或指令。信使 RNA (mRNA) 分子读取此编码序列,然后形成 DNA 模板的互补碱基链。mRNA 包含“密码子”——编码氨基酸的三个核苷酸碱基——并进入细胞质,在那里通过结合转移 RNA (tRNA) 分子执行其指令。就像食谱包含制作食物的食谱一样,细胞的 DNA 是构建和维持生命的说明书,其遗传密码指导蛋白质的产生并促进基本细胞功能。
摘要:化学家现在已经合成了在标准Terran DNA中发现的四种标准核苷酸(鸟嘌呤,腺嘌呤,胞嘧啶和胸腺嘧啶)中添加核苷酸的新型DNA。今天在分子诊断中使用了这种“人为扩展的遗传信息系统”;支持定向进化以创建医学上有用的受体,配体和催化剂;并探索与生命早期演变有关的问题。进一步的应用受到无法直接序列DNA含有非标准核苷酸的限制。纳米孔测序非常适合此目的,因为它不需要酶促合成,扩增或核苷酸修饰。在这里,我们采取了第一步来实现8个字母“ Hachimoji”的纳米孔测序,通过使用MSPA(smegmacterium smegmatis porin a)纳米孔评估其纳米孔信号范围,扩展了DNA字母。我们发现Hachimoji DNA在纳米孔测序中表现出比单独标准DNA更广泛的信号范围,并且Hachimoji单碱基取代是可以高度置信的。由于纳米孔测序依赖于分子电机来控制DNA的运动,因此我们通过跟踪Hachimoji DNA的单个Hel308分子的易位来评估HACHIMOJI DNA的易位,从而评估了HACHIMOJI DNA的hel308运动酶与非标准核苷酸的兼容性,从而监测了酶基因酶的eNzeme disnzeme disnzeme disna。我们发现HEL308与Hachimoji DNA兼容,但是与N-糖苷相比,在C-糖苷核苷上行走时会更频繁地分离。c-糖化核苷通过HEL308中的特定位点会诱导更高的解离可能性。这强调了优化纳米孔测序电机以处理不同的糖苷键的需求。它还可以为未来的替代DNA系统的设计提供信息,这些系统可以与现有电动机和毛孔进行测序。
神经退行性疾病等(Pagiatakis等,2021)。由于医疗和公共卫生资源的显着发展,在过去的几十年中,人类预期寿命迅速增强。然而,增强的预期寿命已导致发病率更高,并且在残疾中生活了多年(Pagiatakis等,2021)。因此,有必要了解衰老过程,以便将与之相关的不良健康结果最小化。研究确定了衰老,基因组不稳定性,端粒短路,蛋白质静脉曲张等的某些标志,表观遗传改变是这些标志之一(López-Otín等人,2013年)。至少在理论上是可逆的,与衰老相关的表观遗传变化正在广泛研究以探索健康衰老的可能性(Jones等,2015)。DNA甲基化是研究最广泛的表观遗传过程(Pal&Tyler,2016年)。DNA甲基化是指在CPG二核苷酸(近鸟嘌呤近端)的胞嘧啶残基(5 MC)的第三碳上添加甲基(Martin&Fry,2018年)。通常,DNA甲基化发生在那些具有高胞嘧啶和鸟嘌呤(CG)含量的基因组区域内,即所谓的CPG岛(Martin&Fry,2018);但是,CPH(H = A,T或C)位点也可以甲基化(Lister等,2013)。DNA甲基化模式由DNA甲基转移酶(DNMT),主要是DNMT3A,DNMT3B和DNMT1(Unnikrishnan等,2018)建立。(Gopalan等,2017; Martin&Fry,2018)。在另一项研究中,Wilson等。在另一项研究中,Wilson等。虽然DNMT3A和DNMT3B是可以识别和甲基化的半甲基化和甲基化的甲基化和未甲基化的DNA的甲基甲基转移酶,但DNMT1是一种能够在半甲基化DNA上起作用的维持甲基转移酶(Okano等人,1999; un.nikrishnan and and,2018)。DNA甲基化水平可以受到内在(遗传背景)和外在因素(例如吸烟,饮食,暴露于空气污染,某些化学物质等)的影响。除了这些因素外,还报道了衰老影响DNA甲基化水平(Gopalan等,2017)。衰老和寿命直接与人类和其他几种生物体的DNA甲基化和表观遗传改变有关,总体趋势会增加全球低甲基化和随着年龄的高甲基化的区域(Johnson等,2012)。根据基因组低甲基化假设,全局DNA甲基化随着年龄的增长而降低,从而导致基因组稳定性降低和基因表达异常(Unnikrishnan等,2018)。尽管随着年龄的基因组低甲基化理论仍然很流行,但采用现代定量技术的最新研究对其进行了挑战(Lister等,2013; Unnikrishnan等,2018)。在探索全球DNA甲基化与衰老之间关系的最早尝试之一中,Vanyushin等人。(1973)研究了从1到28个月之间从雄性白化大鼠的不同组织中提取的5 mc含量的变化。在具有里程碑意义的论文中,威尔逊和琼斯(Wilson and Jones,1983)报告说,从小鼠,仓鼠和人类的皮肤细胞中提取的DNA中,人口倍增(复制衰老)的含量降低,人口加倍(复制衰老)的增加。他们报告说,随着年龄的增长,从大脑,心脏和脾脏组织中提取的DNA的5 mC含量降低。然而,从肝脏,肺和肾脏组织提取的DNA的5个MC含量没有变化(Vanyushin等,1973)。(1987)报道了DNA
Septins disruption controls tumor growth and enhances efficacy of Herceptin 1 2 Rakesh K Singh* 1 , Kyu Kwang Kim 1 , Negar Khazan 1 , Rachael B. Rowswell-Turner 1 , Christian 3 Laggner 3 , Aaron Jones 1 , Priyanka Srivastava 1 , Virginia Hovanesian 4 , Liz Lamere 1 , Thomas 4 Conley 1 , Ravina Pandita 1 , Cameron Baker 5 , Jason R Myers 5 , Elizabeth Pritchett 5 , Awada Ahmad 1 , 5 Luis Ruffolo 2 , Katherine Jackson 2 , Scott A. Gerber 2 , John Ashton 5 , Michael T. Milano 6 , David 6 Linehan 2 , Richard G Moore 1 7 8 1 Wilmot Cancer Institute, Division of Gynecologic Oncology, Department of Obstetrics and 9 Gynecology, University of Rochester Medical Center, Rochester, NY, USA. 10 2 Department of Surgery, Microbiology and Immunology; Department of Radiation Oncology and 11 Center for Tumor Immunology Research, University of Rochester Medical Center, Rochester, NY, 12 USA. 13 3 Atomwise Inc, San Francisco, CA, USA. 14 4 Rhode Island Hospital, Providence, RI, USA. 15 5 Genomics Research Center, Wilmot Cancer Center, University of Rochester Medical Center, NY, 16 USA. 17 6 Department of Radiation Oncology, University of Rochester, NY, USA. 18 19 20 * Corresponding author: 21 Rakesh_Singh@URMC.Rochester.Edu 22 Telephone (office): 585-276-6281. Fax: 585-276-2576 23 24 Abstract 25 Septin expressions are altered in cancer cells and exhibit poor prognoses in malignancies. As the 26 first approach to develop a septin filament targeting agent, we optimized the structure of 27 Forchlorfenuron (FCF), a known plant cytokinin to generate UR214-9, which contrary to FCF, 28 causes septin-2/9 filamental structural catastrophe in cancer cells without altering cellular septin 29 protein levels. In-silico docking using septin-2/septin-2 dimer complex showed that UR214-9 30 displaced the guanine carbonyl oxygen from the GDP binding domain and showed increased 31 binding energy than FCF(-8.59vs-7.21). UR214-9 reduced cancer cell growth, downregulated 32 HER2/STAT-3 axis and controlled growth of HER2+ pancreatic, breast and ovarian cancer 33 xenografts in NSG mice and enhanced response of Herceptin against HER2+breast cancer 34 xenograft. Transcriptome analysis of UR214-9 exposed cells demonstrated significant 35 perturbation of <20 genes compared to afatinib which impacted >1200 genes in JIMT-1 breast 36 cancer cells indicating target specificity and non-transcriptional functions of UR214-9. In summary, 37 disrupting septins via UR214-9 is a new approach to control the growth of HER2+ malignancies. 38 39 Introduction 40 41 Septins are a family of GTP-binding cytoskeletal proteins that participate in cytokinesis, 42 cell migration, chromosomal dynamics and protein secretion. Septins hetero-oligomerize to 43 generate scaffolding filaments, bundles, and rings within cells 1-11 . Additionally, septins are a 44 critical cytoskeletal component that regulate the function of tubulin and actin. Altered septin 45
摘要 背景 错配修复缺陷 (dMMR) 是免疫检查点阻断 (ICB) 反应的一个公认的生物标志物。将 MMR 熟练 (pMMR) 转化为 dMMR 表型以使肿瘤对 ICB 敏感的策略受到高度追捧。含溴结构域 4 (BRD4) 抑制和 ICB 的结合提供了有希望的抗肿瘤作用。然而,其潜在机制仍然未知。在这里,我们发现 BRD4 抑制会在癌症中诱导持续的 dMMR 表型。方法我们通过对癌症基因组图谱和临床蛋白质组肿瘤分析联盟数据进行生物信息学分析以及对卵巢癌标本的免疫组织化学 (IHC) 评分进行统计分析,证实了 BRD4 与错配修复 (MMR) 之间的相关性。通过定量逆转录 PCR、蛋白质印迹和 IHC 测量 MMR 基因 (MLH1、MSH2、MSH6、PMS2)。通过全外显子组测序、RNA 测序、MMR 检测和次黄嘌呤-鸟嘌呤磷酸核糖转移酶基因突变检测确认 MMR 状态。在体内和体外诱导 BRD4i AZD5153 耐药模型。通过细胞系之间的染色质免疫沉淀和来自 Cistrome 数据浏览器的数据研究了 BRD4 对 MMR 基因转录的影响。在体内证明了对 ICB 的治疗反应。通过流式细胞术测量了肿瘤免疫微环境标志物,例如 CD4、CD8、TIM-3、FOXP3。结果我们在转录和翻译方面确定了 BRD4 和 MMR 基因之间的正相关性。此外,BRD4 转录抑制会降低 MMR 基因表达,导致 dMMR 状态和突变负荷升高。此外,长期暴露于 AZD5153 可在体内和体外促进持久的 dMMR 特征,增强肿瘤的免疫原性,并且尽管获得了耐药性,但仍增加了对 α - 程序性死亡配体-1 疗法的敏感性。
CCCTC结合因子(CTCF)结合了其11个串联锌(ZF)DNA结合域的哺乳动物ChR量型的增强子和启动子的数十含量。除了12-15 bp的核序列外,某些CTCF结合位点还包含上游和 /或3'下游motifs。在这里,我们分别描述了人类CTCF重叠部分的两个结构,包括ZF1 – ZF7和ZF3 – ZF11与DNA的复合体中的ZF1-ZF7和ZF3 – ZF11,它们将核心序列与3'下游或5'上游基序一起结合在一起。像常规的串联ZF阵列蛋白一样,ZF1 – ZF7 fol-DNA的右手扭曲,每个填充物均占据并识别一个在DNA Major Grove中的三个碱基对的三重态。Zf8 pla ys独特的作用,充当跨DNA或gro的间隔物,并定位ZF9 – ZF11,使其与DNA进行交叉接触。我们将ZF1 – ZF7和ZF8 – ZF11的TW O子分组之间的差异归因于每个纤维内两个位置-6和-5处的残基,而ZF1-ZF7的残基和ZF8 – ZF8 – ZF8 – ZF8-ZF8 – ZF8 – ZF8的ZF1 – ZF7的残基和较小的残基。ZF8也富含碱性氨基酸,该氨基酸使盐桥允许在较小的含量中添加到DNA磷酸盐。较高的特异性Ar ginine-鸟氨酸和谷氨酰胺 - 腺嘌呤相互作用,用于ZFS的常规碱基相互作用位置在常规的碱基相互作用位置上进行补充,也适用于ZF9 – ZF11所采用的跨链相互作用。ZF1 – ZF7和ZF8-ZF11之间的差异可以比例化结构,并且可以促进高实用性CTCF结合位点的识别。
在恶性神经胶质瘤中,MGMT(O 6-甲基鸟嘌呤甲基转移酶)基因启动子甲基化的描述/背景测试已被提议作为预测哪些恶性神经胶质瘤患者可能受益于使用烷基化剂化学疗法的方法,例如替莫唑胺(TMZ)。恶性神经胶质瘤通常接受联合治疗,包括切除,化学疗法和放射线。然而,在老年人群中,联合治疗可能太密集了,其中最常见的是这些肿瘤。对这些肿瘤的遗传多样性有了更好的了解,导致努力将分子发现纳入临床实践中,以为包括单药治疗在内的个别患者提供个性化治疗。恶性神经胶质瘤恶性神经胶质瘤是成人最常见的原发性脑癌,在美国,每年约有13,000例新病例。使用世界卫生组织(WHO)组织学标准的脑肿瘤分级对应于恶性(侵略性)的程度,范围从WHO I级(最不侵略性)到IV级(最具侵略性)。 对于恶性神经胶质瘤,间变性星形细胞瘤被认为是III级和胶质母细胞瘤多形(GBM)IV级。 ,GBM是最常见和研究最多的亚型。 1尽管有治疗的进展,但GBM的预后仍然很差,只有三分之一的患者存活了一年,不到5%的患者超过5年。 在2016年,他修订了其中枢神经系统肿瘤(CNS)的分类,以便根据遗传驱动器突变对弥漫性浸润的神经胶质瘤进行分组。使用世界卫生组织(WHO)组织学标准的脑肿瘤分级对应于恶性(侵略性)的程度,范围从WHO I级(最不侵略性)到IV级(最具侵略性)。对于恶性神经胶质瘤,间变性星形细胞瘤被认为是III级和胶质母细胞瘤多形(GBM)IV级。,GBM是最常见和研究最多的亚型。1尽管有治疗的进展,但GBM的预后仍然很差,只有三分之一的患者存活了一年,不到5%的患者超过5年。在2016年,他修订了其中枢神经系统肿瘤(CNS)的分类,以便根据遗传驱动器突变对弥漫性浸润的神经胶质瘤进行分组。2弥漫性神经胶质瘤包括前WHO II和III级星形胶质细胞肿瘤,II级和III少突胶质瘤,IV级胶质母细胞瘤和儿童弥漫性神经胶质瘤。具有胶质母细胞瘤组织学的肿瘤是根据IDH变体的存在分组的。
越来越多的证据表明,构成微生物组的人类肠道细菌与几种神经退行性疾病有关。在几项研究中发现了帕金森氏病(PD)和阿尔茨海默氏病(AD)患者的细菌种群的失衡。这种营养不良很可能会降低或增加分别具有保护性或有害人体的微生物组衍生的分子,并通过所谓的“肠脑轴”传达给大脑的这些变化。微生物组衍生的分子Queuine是一种富含大脑中的核酶,仅由细菌产生,并由人类通过其肠道上的表现来挽救。Queuine用枪支抗密码子在TRNA的Wobble位置(位置34)取代鸟嘌呤,并促进有效的细胞质和线粒体mRNA翻译。Queuine耗竭会导致蛋白质的折叠和激活,并激活小鼠和人类细胞中内质网应激和展开的蛋白质反应途径。蛋白质聚集和线粒体障碍通常与神经功能障碍和神经变性有关。为了阐明女王是否可以促进蛋白质折叠,并防止导致蛋白质病的聚集和线粒体缺陷,我们在几种化学合成的Queuine STL-101中测试了几种化学合成的女性STL-101的作用。用STL-101预处理神经元后,我们观察到高磷酸化的α-突触核蛋白的降低显着降低,α-突触核蛋白的标记是灰核核疗法的PD模型中α-突出蛋白聚集的标志物,并且在Accute and Actau consation and actau pyphosphoration中降低了Actuce and Actau phossephose contau pysease contau pysepy pd。此外,在AD模型以及PD的神经毒性模型中,在用STL-101预处理的细胞中发现了神经元存活的相关增加。测量180个神经健康个体血浆中的queuine表明健康的人类维持皇后区的保护水平。我们的工作已经确定了女性在神经保护中的新作用,从而发现了神经系统疾病中STL-101的治疗潜力。
