(1)577 Richardson, DJ 填充光导管。Science 2010 ,330 ,327 − 578 328。 (2)579 Desurvire, E.; 等人。21 世纪光通信中的科学和技术挑战。Comptes Rendus Physique 2011 ,12 ,581 387 − 416。 (3)582 Soref, R. 实现 2 μ m 通信。Nature Photonics 583 2015 ,9 ,358 − 359。 (4)584 Li, Z.; Heidt, A.; Daniel, J.; Jung, Y.; Alam, S.-U.; Richardson, D. 585 J. 用于 2 μ m 光通信的掺铥光纤放大器。 586 Optics Express 2013 , 21 , 9289 − 9297。(5)587 Roberts, PJ; Couny, F.; Sabert, H.; Mangan, BJ; Williams, D. 588 P.; Farr, L.; Mason, MW; Tomlinson, A.; Birks, TA; Knight, JC; 589 Russell, PS 空芯光子晶体光纤的极低损耗。590 Optics express 2005 , 13 , 236 − 244。(6)591 Zhang, H.; et al. 100 Gbit/s WDM 传输 (2 μ m):592 低损耗空芯光子带隙光纤和实心光纤的传输研究。 Optics Express 2015 , 23 , 4946 − 4951。(7)594 Li, Z.;Heidt, A.;Simakov, N.;Jung, Y.;Daniel, J.;Alam, S.;595 Richardson, D. 二极管泵浦宽带掺铥光纤放大器,用于 1800 − 2050 nm 窗口的光通信。597 Optics express 2013 , 21 , 26450 − 26455。(8)598 Frehlich, R.;Hannon, SM;Henderson, SW 2 μ m 相干多普勒激光雷达在风测量中的性能。大气与海洋技术杂志1994, 11, 1517−1528。 (9) Taczak, TM; Killinger, DK 研制出一种可调、窄线宽、连续2.066μm Ho:YLF激光器,用于遥感大气中的 CO2 和 H2O。应用光学1998, 37, 8460−8476。
马萨诸塞州伯灵顿和魁北克省蒙特利尔 – 2023 年 9 月 13 日 – 领先的清洁能源生产商、开发商和能源存储公司 FirstLight Power(FirstLight)今天宣布,已完成收购 Hydromega Services Inc.(Hydroméga)的协议,包括魁北克五个水力发电站和安大略省东北部另外五个水力发电站的所有权。此外,FirstLight 将增加 Hydroméga 的清洁能源开发渠道,其中包括超过 2 吉瓦 (GW) 的风能、太阳能、存储和水力发电项目,使 FirstLight 在美国和加拿大的开发渠道翻一番,达到约 4 GW。该交易预计将于 2023 年第四季度完成,并需满足惯例成交条件。继最近整合 H2O Power 之后,Hydroméga 的运营资产的加入将使 FirstLight 在魁北克和安大略省的总运营能力超过 200 MW。 Hydroméga 的运营资产为这些省份提供清洁、可靠的电力,这些项目包括四个原住民的所有权参与,为这些土著社区带来长期利益。通过扩大其在加拿大市场的影响力,FirstLight 可以推进 Hydroméga 多元化的可再生能源开发渠道,包括魁北克超过 1,000 兆瓦的风电开发项目和安大略省超过 1,000 兆瓦的电池存储开发项目,从而进一步加速公司在北美的增长。FirstLight 还将欢迎 Hydroméga 的员工加入其不断壮大的团队。FirstLight 总裁兼首席执行官 Alicia Barton 表示:“对 Hydroméga 平台的战略性收购将延续 FirstLight 令人振奋的转型时期。” “通过将 Hydroméga 的开发能力和运营资产添加到 FirstLight 现有的多元化可再生能源和能源存储组合中,我们将在未来几年实现更大的增长,因为我们追求我们的使命,即通过建设、运营和整合可再生能源和存储来加速电网脱碳,以满足世界日益增长的清洁能源需求。我们期待与 Hydroméga 的优秀团队及其原住民和当地政府合作伙伴合作,为魁北克、安大略省及其他地区的社区提供清洁、可靠的电力。” Hydroméga 是加拿大可再生能源生产和开发的先驱,在魁北克省发起、开发、实施和运营清洁电力生产设施已有 36 年多,在安大略省也有 20 年。1987 年,该公司成为第一家在魁北克运营水力发电设施的独立电力生产商,也是该省首批风电开发商之一,成功发起了 1,000 多兆瓦的风电项目,占魁北克省风力发电装机容量的25%以上。
随着世界人口的增长和经济工业化的发展,世界各地的能源消耗正在迅速增加。与此同时,保护化石燃料储量的压力和气候变化正在加剧社会能源链,并为扩大世界道路运输机动性部门寻找清洁燃料来源。氢气是生产可再生能源的最重要因素之一,氢气是完美的燃料,它效率最高,在燃料电池中使用时不会产生排放。它无毒,来自可再生资源,也不是温室气体。许多研究表明,氢气可能仅依赖于石油和其他传统燃料。氢气用于燃料电池发电,也可用作内燃机燃料。与内燃机相比,燃料电池具有显著的效率优势,使其成为将氢转化为电能的主要设备。氢是一种无味无色的气体,氢原子仅由一个质子和一个电子组成,它也是宇宙中最重要的元素,但氢在自然界中并不存在,它总是与其他元素结合,例如水是氢和氧的结合体(H2O)。氢不是能源,而是只能从其他能源中产生,因此它被称为一种能源,是一种储存和运输能源的方式。氢是最简单的无味无珊瑚的情况,氢原子仅由一个质子和一个电子组成。它也是宇宙中最重要的。氢存在于许多有机化合物中,如碳氢化合物,它们构成了我们的许多燃料,如汽油、天然气、生物质、甲醇和丙烷。氢可以通过加热从碳氢化合物中分离出来,这一过程称为重整。大多数氢是通过这种方式从天然气中制成的,但天然气是化石燃料,因此在重整过程中释放的二氧化碳加剧了温室效应。氢气的能量非常高,但体积却非常小,因此需要新技术来储存和运输氢气。燃料电池技术仍处于早期开发阶段,需要提高效率和耐用性,也可用于将水分离成氧气和氢气。这个过程被称为电解。在未来的氢经济中,氢气将从各种能源中生产出来并储存起来以备日常使用,或者可以将其转移到需要的地方,然后干净地转化为热能和电能。能源用于从水中生产氢气,一次和二次能源形式都可再生且与环境相容,从而形成理想的清洁和永久能源系统,这被称为太阳能氢能系统。氢可用于当今使用化石燃料的任何领域,除了特别需要碳的情况。氢可用作英特尔内燃机、涡轮机和喷气发动机的燃料,其效率甚至比化石燃料(例如煤、石油和天然气)更高。汽车、公共汽车、火车、座椅、潜艇、飞机都离不开氢。燃料电池还可将氢直接转化为电能,在交通运输和固定发电领域有多种应用。金属水合物技术在制冷、空调、氢气储存和净化领域有多种应用。氢与氧燃烧可产生氢气,在工业过程和专业领域有多种应用。此外,氢还是计算机、冶金、化学、制药、化肥和食品等众多行业的重要工业气体和原料。
碳水化合物的定性分析。碳水化合物的定性和定量测试。碳水化合物的定性和定量分析。碳水化合物定量分析。碳水化合物PDF的定性分析。碳水化合物是在动物和植物中都可以发现的复杂分子。它们的特征是其化学配方cn(H2O)N,其中n代表碳原子和水分子的数量。这些化合物通过氧化提供了能量,并用作储存的化学能源。除了作为主要能源外,碳水化合物还在细胞成分的合成中起着至关重要的作用。碳水化合物分为三个主要类别:单糖,二糖和多糖。单糖由包含3至7个碳的单个碳水化合物分子组成,而二糖是通过将两个单糖连接在一起而形成的。多糖由许多单糖单元组成。当我们食用碳水化合物时,它们在我们的体内分解,最终形成水和二氧化碳,释放出用于各种身体功能的能量。多余的碳水化合物可以在肝脏中存储为糖原或转化为脂肪。植物通过光合作用产生碳水化合物,该过程利用来自太阳的能量来从水和二氧化碳中构建这些化合物。单糖结构可以使用Fischer投影来表示,这显示了分子中每种手性碳的立体化学。这有助于轻松比较单糖结构。例如,葡萄糖和半乳糖是两个糖,它们的名称不同,因为它们在碳4。在溶液中,大多数单糖作为环状半含量存在,其中醛或酮基在同一分子的另一端与一个羟基反应。有两种主要形式的D-葡萄糖:α-D-葡萄糖和β-D-葡萄糖。这些结构在解决方案中不断互相互连。化学测试可以确定糖是否还原。还原糖含有一个游离的异源碳,该碳可以与Fehling的试剂(如Cu2+还原引起的红色变红)反应。Barfoed的测试相似,但与各种糖的反应不同。Seliwanoff的测试涉及脱水,并形成带有酮的樱桃红色复合物,而Aldose的反应较慢。化学测试还可以识别特定类型的碳水化合物。例如,碘形成带有淀粉的蓝色复合物,表明淀粉糖或其他螺旋盘绕的多糖。产生的颜色取决于多糖的结构和碘溶液的强度/年龄。与酵母配对时,许多碳水化合物可以进行发酵,从而产生乙醇和二氧化碳作为副产品。C6H12O6→2 CH3CH2OH + 2 CO2(G)发酵用于酿造啤酒和葡萄酒,在这里生产的酒精可作为所需的结果。但是,并非所有糖都可以用酵母作为食物来源。注意:有些测试需要热水浴。确定在存在酵母菌的情况下发酵哪些糖,哪些糖不得进行,您将进行一系列测试。发酵的证据将表现为二氧化碳气体的进化。在每个测试中,一个含有酵母和要测试的糖的溶液将被困在倒置的小试管中。几天后,检查测试管中的气泡形成。如果存在,则表明发酵发生。二糖和多糖暴露于酸或特定酶时可以水解。当水解二糖时,其产物是单个单糖。多糖在水解后产生葡萄糖,麦芽糖和葡萄糖的混合物。如果完全水解,则产品将是葡萄糖。在本实验中,您将水解蔗糖,然后测试是否存在还原糖。您还将水解淀粉并同时测试减少糖和淀粉。实验过程中始终戴安全护目镜。在实验的结论中,将所有废物处理在指定的无机废物容器中。在热板上加热几个烧杯,在需要时准备好它们。1。发酵:本部分描述了如何制备测试。大型测试管已被标记并填充了要测试的每个溶液。将一个小试管倒置在每个大型试管中,使其完全填充溶液。记录演示开始的日期和时间。接下来是Barfoed的测试!大型试管的每个顶部都被覆盖并倒置,以便内部的小试管完全充满溶液。加入并溶解到每个试管,0.5 g的碳水化合物样品,50 mL实验室水和0.02-0.03 g的酵母菌。检查小型测试管中的任何气泡。如果存在,则表明在反应过程中产生了气体,在管中发生了表示发酵。您的任务是进行一些观察!在实验的这一部分中,您将测试已知的葡萄糖,果糖,乳糖,蔗糖,淀粉的样品,并将其与未知成分样品进行比较。您将使用三种不同的测试:Fehling的测试,Barfoed的测试和Seliwanoff的测试。在Fehling的测试中,您将与6 ml溶液B混合6 mL溶液A,以创建Fehling的溶液。然后,在包含未知样品的每个试管中加入2 ml的该组合溶液,以及一些已知样品进行比较。将管子在沸水浴中加热5分钟,并观察发生的事情。如果您看到红色沉淀形式,则表示正反应。您将在每个试管中将每种溶液与3 mL barfoed的试剂混合1毫升。然后,将管子在沸腾的水浴中加热5分钟,观察发生的事情。如果看到红色沉淀形式,它也表示正反应。请注意沉淀出现需要多长时间。最后,您将使用Seliwanoff的测试!然后,加入4毫升Seliwanoff试剂并充分混合。记录您的观察结果!5。6。将每种溶液添加10滴以在包含未知样品的每个试管中测试,以及一些已知样品进行比较。在沸腾的水浴中加热管子,直到看到颜色变化(这可能需要大约10分钟)。记住要仔细观察并记录您做出的任何结果或观察结果!碘测试:我们将测试葡萄糖,果糖,乳糖,蔗糖,淀粉,水,并将其与未知成分样品进行比较。首先,将每种溶液的1 ml添加到7个标记的测试管之一中。然后,将3滴碘溶液添加到每个管中并混合。比较颜色并记录您的观察结果。水解:该部分分为三个部分(6A-C)。在6A中,我们将在试管中将0.5 mL 3 M HCl与5 ml的1%蔗糖溶液混合。在沸腾的水浴中加热20分钟,然后冷却并用1 M NaOH中和混合物,直到在pH纸上测试中性。将该溶液的8-10滴转移到小试管中。接下来,将1毫升Fehling溶液A与1 mL Fehling溶液B混合,然后将其添加到包含水解的蔗糖的小试管中。在沸水浴中加热几分钟。记录您的观察结果。6b:在这一部分中,我们将在试管中将3 ml的1%淀粉与0.5 mL HCl混合。在沸水浴中加热10分钟,然后冷却并用1 M NaOH中和混合物,直到在pH纸上测试中性。将该溶液的8-10滴转移到小试管中。在沸水浴中加热几分钟。2。接下来,将1毫升Fehling溶液A与1 mL Fehling的溶液B混合,然后将其添加到包含水解淀粉的小试管中。记录您的观察结果。6C:使用步骤6B的剩余溶液,将1 mL传递到小试管中,并加入3滴碘溶液。记录您的观察结果,并将它们与尚未水解的淀粉的结果进行比较。发布实验室问题:1。基于实验每个部分的结果,确定您的未知组件并解释原因。将蔗糖的Fehling测试结果与水解蔗糖的测试结果进行了比较。您的结果告诉您什么?3。重写文本:讨论了Fehling对淀粉和水解淀粉的测试的结果。此外,在淀粉和水解淀粉上进行的碘测试进行了比较。阐明了“还原糖”的概念。此外,检查了Seliwanoff测试和碘测试中的水的目的。绘制了α-D-Fructose和β-D-Fructose的结构图。 分析了一种与Fehling试剂,Seliwanoff的试剂和Barfoed的试剂反应的未知碳水化合物。 关于碳水化合物的结论是根据其反应得出的。 对蔗糖和乳糖,葡萄糖和淀粉的区分以及葡萄糖和果糖进行了区分的测试以及每种测试的解释。 最后,检查所有二糖都不会使用酵母进行发酵的原因。绘制了α-D-Fructose和β-D-Fructose的结构图。分析了一种与Fehling试剂,Seliwanoff的试剂和Barfoed的试剂反应的未知碳水化合物。关于碳水化合物的结论是根据其反应得出的。对蔗糖和乳糖,葡萄糖和淀粉的区分以及葡萄糖和果糖进行了区分的测试以及每种测试的解释。最后,检查所有二糖都不会使用酵母进行发酵的原因。(注意:重写文本在应用“添加拼写错误(SE)”方法时保持文本的原始含义和结构。)
