六种甲基转移酶分工建立组蛋白 H3 赖氨酸 9 甲基化 (H3K9me) 的基因组图谱,H3K9me 是一种控制组成性异染色质、基因抑制和逆转录元件沉默的表观基因组修饰。其中,SETDB1 被募集到活性染色质域以沉默内源性逆转录病毒的表达。在旨在确定 SETDB1 对巨噬细胞中刺激诱导基因表达的影响的实验中,我们发现 SETDB1 耗竭导致的 H3K9me3 丢失与 CTCF 募集增加有关,这些募集到 SINE B2 重复序列中包含的 >1600 个 DNA 结合基序,这是之前未确定的 SETDB1 介导的抑制靶点。CTCF 是染色质折叠的重要调节剂,可抑制黏连蛋白引起的 DNA 成环,从而在相邻拓扑域之间创建边界。 CTCF 与 SINE B2 重复序列的结合增加,增强了数百个位点的绝缘性,并增加了含有脂多糖诱导基因的拓扑域内的环形成,这与它们对刺激的调节受损有关。这些数据表明 H3K9me3 在抑制 CTCF 的基因组分布和活性方面发挥着作用,并对染色质组织和基因调控产生影响。
T细胞功能障碍,包括记忆力损失和疲劳,是CAR T细胞疗法功效的主要局限性。在CAR T细胞中操纵转录因子(TF)活性,例如过表达FOXO1和JUN或PRDM1和NR4A3的消融,可以改善其在肿瘤控制过程中的衰竭分化和记忆丧失。这表明长时间的肿瘤暴露可能会导致转录程序失调,以诱导CAR T细胞功能障碍和记忆力丧失。ezh2,催化赖氨酸27(H3K27ME3)在编排多个基因程序表达的H3的三甲基化中,在小鼠中T细胞免疫反应的调节中起着核心作用。然而,是否需要EZH2才能消除肿瘤,以及肿瘤是否靶向T细胞EZH2诱导CAR T细胞功能障碍仍然未知。在这里,我们证明了EZH2是CAR T细胞反应的主要调节剂,对肿瘤控制至关重要,并且在CAR T细胞中强迫表达耐磷酸化的EZH2的EZH2使它们具有增强的能力,可抵抗肿瘤诱导的功能障碍和记忆损失。
流感病毒菌株之间的抗原变异性对开发广泛的保护性,持久的疫苗构成了重大挑战。当前的年度疫苗靶向特定菌株,需要准确预测有效中和。尽管系统发育群体之间的序列多样性,但血凝素(HA)头域的结构仍然高度保守。利用这种保护,我们设计的跨组嵌合具有结合远处菌株的抗原表面。通过结构引导的受体结合位点(RBS)残基的移植,我们在H1 HA支架上显示了H3 RBS。这些嵌合免疫原子会引起能够中和底菌株和远端菌株的跨组多克隆反应。此外,嵌合体整合了异三聚体免疫原子,增强了模块化疫苗的设计。这种方法使包含各种应变段能够产生广泛的多克隆响应。将来,这种模块化免疫原子可以用作评估免疫力优势和完善免疫策略的工具,从而提供了桥接和增强免疫力患者免疫反应的潜力。该策略有望推进普遍的流感疫苗开发。
人们越来越多地研究将红酵母用作脂质、脂肪酸衍生物和萜类化合物的生物生产宿主。人们已经开发了各种遗传工具,但尚未报道过着丝粒和自主复制序列 (ARS),而这两者都是维持稳定的游离质粒所必需的元素。在本研究中,使用靶标下切割并使用核酸酶释放 (CUT&RUN)(一种用于全基因组 DNA-蛋白质相互作用映射的方法)来识别与着丝粒组蛋白 H3 蛋白 Cse4(着丝粒 DNA 的标记)相关的红酵母 IFO0880 基因组区域。识别并分析了 15 个长度从 8 到 19 kb 不等的假定着丝粒,并对其中四个进行了 ARS 活性测试,但未显示 ARS 活性。这些着丝粒序列含有低于平均水平的 GC 含量,对应于转录冷点,主要是非重复的,并且共享一些残留转座子相关序列,但除此之外没有显示显著的序列保守性。未来在该酵母中识别 ARS 的努力可以利用这些着丝粒 DNA 序列来提高来自假定 ARS 元素的游离质粒的稳定性。
4. 卫生署卫生防护中心的实验室监测数据显示,公共卫生化验服务处及医院管理局的呼吸道样本检测结果呈流感病毒阳性的比例在1月初达到高峰,达11.77%,高于基线阈值9.21%。在这个流感季节,大多数(55%)流感检测结果都是甲型流感(H3)病毒,尽管甲型流感(H1)和乙型流感检测结果的比例在2月底至3月初逐渐增加。与此同时,公立医院以流感为主要诊断的整体入院率也达到高峰,为每10,000人口0.80例,超过了每10,000人口0.25例的基线阈值。在这个流感季节,各年龄组的入院率都有所增加,尤其是12岁以下的儿童和65岁或以上的长者。但流感病毒检测率和流感相关入院峰值均低于去年流感季节的水平,也远低于2018年(检测峰值为27%,入院峰值为1.50)和2019年(检测峰值为30%,入院峰值为1.58)的新冠疫情前的冬季流感季节。
在人类中,β-珠蛋白的特异性畸变会导致镰状细胞病和β-地中海贫血,而这些疾病的症状可以通过增加胎儿珠蛋白 (HbF) 的表达来改善。最近进行的两次 CRISPR-Cas9 筛选以 ~1500 种带注释的序列特异性 DNA 结合蛋白为中心,在表达成人血红蛋白的人类红系细胞中进行,发现了四组 HbF 基因表达的候选调节因子。它们是 (1) 已知可用于控制 HbF 的核小体重塑和去乙酰化酶 (NuRD) 复合蛋白的成员;(2) 七种 C2H2 锌指 (ZF) 蛋白,其中一些 (ZBTB7A 和 BCL11A) 已知可直接沉默成人人类红系细胞中的胎儿 γ-珠蛋白基因;(3) 一些其他不同结构类别的转录因子,它们可能间接影响 HbF 基因表达; (4)DNA 甲基转移酶 1 (DNMT1) 维持 DNA 甲基化标记,这些标记将 MBD2 相关的 NuRD 复合物吸引到 DNA 上,以及相关的组蛋白 H3 赖氨酸 9 甲基化。本文我们简要讨论了这些调节剂(特别是 C2H2 ZF)在诱导 HbF 表达以治疗 β 血红蛋白疾病方面的作用,以及开发安全有效的小分子疗法以调节这种高度保守的血红蛋白转换的最新进展。
三阴性乳腺癌 (TNBC) 是一种高度侵袭性的乳腺癌亚型,其特征是显著的分子异质性。目前,尚无有效的药物靶点和先进的人类疾病临床前模型。在这里,我们生成了一种独特的乳腺肿瘤小鼠模型(MMTV-R26 Met 小鼠),该模型由野生型 MET 受体表达的细微增加驱动。MMTV-R26 Met 小鼠会自发形成排他性 TNBC 肿瘤,重现患者对治疗的原发性耐药性。MMTV-R26 Met 肿瘤的蛋白质组学分析和机器学习方法表明,该模型忠实地重现了人类 TNBC 的肿瘤间异质性。进一步的信号网络分析突出了潜在的药物靶点,其中 WEE1 和 BCL-XL 的共同靶向协同杀死 TNBC 细胞并有效诱导肿瘤消退。从机制上看,BCL-XL 抑制加剧了 TNBC 细胞对 WEE1 功能的依赖,导致组蛋白 H3 和磷酸化 S 33 RPA32 上调、RRM2 下调、细胞周期扰动、有丝分裂灾难和细胞凋亡。本研究介绍了一种独特、强大的小鼠模型,用于研究 TNBC 的形成和进化、其异质性以及确定有效的治疗靶点。
化学抗性的发展是多发性骨髓瘤(MM)临床管理失败的主要原因,但是相互作用以赋予这种化学抗性的遗传和表观遗传畸变仍然未知。在本研究中,我们发现高类固醇受体共激活剂3(SRC-3)表达与基于硼替佐米(BTZ)的MM患者的复发/难治性和不良结局相关。此外,在永生的细胞系中,高SRC-3增强了对蛋白酶体抑制剂(PI)诱导的凋亡的抗性。过表达的组蛋白甲基转移酶NSD2在具有T(4; 14)易位的患者中或在BTZ耐药的MM细胞中通过增强其液相 - 液相分离以超天然修饰的组蛋白H3赖氨酸36赖氨酸36二甲基化(H3K36MEE2)的模态,从而使SRC-3升高升高。使用新开发的抑制剂SI-2靶向SRC-3或其与NSD2的相互作用,使BTZ处理敏感并克服了体外和体内耐药性。总而言之,我们的发现阐明了MM获得的耐药性耐药性中先前未识别的SRC-3和NSD2编排,并表明SI-2可能会在MM患者中克服耐药性。
BE1、BE2 和 BE3 特色区域 S1、S2、S3、S7 和 S8:圣艾夫斯历史核心区 ...................................................................... 55 BE4 特色区域 S4 和 S8:唐朗和波斯米尔东部 ...................................................................... 56 BE5 特色区域 S5 和 S11:梯田区和后期梯田区 ............................................................................. 57 BE6 特色区域 S6:沿海郊区和铁路度假村 ............................................................................. 57 BE7 特色区域 S7:海滩和岛屿 ............................................................................................. 58 BE8 特色区域 S9:波斯米尔中部 ............................................................................................. 59 BE9 特色区域 S10:波斯米尔西部 ............................................................................................. 59 BE10 特色区域 S12:圣艾夫斯西部 ............................................................................................. 60 BE11 特色区域 S13:贝利亚尔 ............................................................................................. 61 BE12 卡比斯湾:特色区域 C1 – C7 ................................................................................ 61 BE13 特色区域 L1 和 L2:莱兰特历史核心区和外围地区的历史集群 62 BE14 特色区域 L3-L8:1920 年后莱兰特特色区域 ........................................................ 63 BE15 特色区域 H1 – H3:哈尔斯敦保护区和村庄扩展区 ........................................................ 63 BE16 特色区域:圣艾夫斯、卡比斯湾和莱兰特乡村周边地区 ............................................................. 64 BE17 现有私人花园的开发 ............................................................................................. 65
结果:为了应对这些挑战,我们设计了一种紧凑的无酶表观遗传编辑器,称为 CHARM(偶联组蛋白尾,用于甲基转移酶的自抑制释放)。通过与组蛋白 H3 尾和非催化性 Dnmt3l 结构域直接融合,CHARM 能够募集和激活细胞内源性表达的 DNA 甲基转移酶,以甲基化靶基因。CHARM 可以独立于 KRAB 转录抑制结构域发挥作用,并与多种 DNA 结合方式兼容,包括 CRISPR-Cas、转录激活因子样效应物和锌指蛋白。锌指蛋白体积小,最多可容纳三个 DNA 靶向元件,并有额外的空间容纳调节元件,以赋予细胞类型特异性。当与靶向锌指结构域的朊病毒蛋白结合并通过 AAV 递送到小鼠大脑时,CHARM 会甲基化朊病毒基因启动子,并使全脑神经元朊病毒蛋白减少高达 80%,远远超过治疗效果所需的最低减少量。此外,我们开发了自我沉默 CHARM,它们在沉默靶标后会自主停用。这种方法暂时限制了 CHARM 表达,以避免因非分裂神经元中的慢性表达而导致的潜在抗原性和脱靶活性。
