描述每年最多可选择6名即将毕业的DHSHP学生参加HPA。这些学生会接受BCM的临时认可,并要求完成UH Honors College的所有学士学位要求,并符合BCM接受之前符合其他标准(以下概述)。整个计划持续了八年,从进入UH的HPA到BCM毕业。HPA的申请人必须填写四个申请:1)UH入学申请,2)UH荣誉大学申请,3)HPA申请和4)4)免费申请联邦财政援助(FAFSA) - 休斯顿联邦大学法规为003652)。HPA申请人必须在BCM审查之前录取UH和UH荣誉学院。通过BCM医学院招生过程选择了HPA的申请人,可以专业参加UH提供的任何本科学位课程。但是,他们必须完成荣誉大学的荣誉大学课程要求以及荣誉学院提供的医学与社会的次要要求。
衍生产品6。地理电位高度(在40压力水平下)7。总质沉水8。第1层(1000-900 hpa)可溶性水9.第2层(900-700 hpa)可溶的水10。第3层(700-300 hpa)可溶性水11。提起索引12。风索引13。干燥的Microburst索引14。最大垂直theta-e
输入和输出 电源电压 10 ... 35 VDC 电源电压灵敏度 可忽略不计 +20 °C 时的典型功耗(U 输入 24 VDC,一个压力传感器) RS-232 25 mA RS-485 40 mA U 输出 25 mA I 输出 40 mA 显示屏和背光 +20 mA 串行 I/O RS232C、RS485/422 压力单位 hPa、mbar、kPa、Pa inHg、mmH 2 0、mmHg、torr、psia A 类 B 类 分辨率 0.01 hPa 0.1 hPa 通电稳定时间(一个传感器) 4 秒 3 秒 响应时间(一个传感器) 2 秒 1 秒 加速度灵敏度 可忽略不计 压力连接器 M5(10-32)内螺纹 压力接头 1/8” I.D. 的倒钩接头带截止阀的 1/8” 软管或快速接头 最大压力限制 5000 hPa 绝对值。符合 EMC 标准 EN61326-1:1997 + Am1:1998 + Am2:2001:工业环境
• 带环保封装的压力传感器 • 操作范围:压力:300 –1200 hPa。温度:-40 – 85 °C。• 压力传感器精度:± 0.002 hPa(或 ±0.02 m)(高精度模式)。• 相对精度:± 0.06 hPa(或 ±0.5 m) • 绝对精度:± 1 hPa(或 ±8 m) • IPx8 认证:临时浸泡在 50m 深水中 1 小时 • 温度精度:± 0.5°C。• 压力温度灵敏度:0.5Pa/K • 测量时间:标准模式(16x)通常为 27.6 ms。最小值:低精度模式为 3.6 ms。• 平均电流消耗:压力测量 1.7 µA,温度测量 @1Hz 采样率 1.5 µA,待机:0.5 µA。• 电源电压:VDDIO:1.2 – 3.6 V,VDD:1.7 – 3.6 V。 • 操作模式:命令(手动)、后台(自动)和待机。• 校准:使用系数单独校准以进行测量校正。• FIFO:存储最多 32 个压力或温度测量值。• 接口:I2C 和 SPI(均带有可选中断) • 封装尺寸:8 针 PG-VLGA-8-2,2.0 mm x 2.5 mm x 1.1 mm。• 符合绿色产品 (RoHS)
本文介绍了一种用于雷达应用的新型 X 波段碳化硅 (SiC) 共面波导 (CPW) 单片微波集成电路 (MMIC) 高功率放大器 (HPA) 设计。在设计中,采用了 0.25 μ m γ 形栅极和高电子迁移率晶体管 (HEMT),它们采用了碳化硅基氮化镓技术,因为它们具有高热导率和高功率处理能力。此外,在 8.5 GHz 至 10.5 GHz 的频率范围内,反射系数低于 -10 dB,可产生 21.05% 的分数带宽。此外,MMIC HPA 在 2 GHz 带宽内实现了 44.53% 的功率附加效率 (PAE),输出功率为 40.06 dBm。此外,由于 MMIC HPA 具有高输出功率、宽工作带宽、高 PAE 和紧凑尺寸,因此非常适合用于 X 波段有源电子扫描阵列雷达应用。索引术语 — 有源电子扫描阵列 (AESA) 雷达、共面波导 (CPW)、碳化硅 (SiC) 上的氮化镓 (GaN)、高电子迁移率晶体管 (HEMT)、单片微波集成电路 (MMIC)、高功率放大器 (HPA)。
人胰腺α-淀粉酶(HPA)是碳水化合物水解的催化剂,是控制2型糖尿病的可行靶标之一。抑制α-淀粉酶低葡萄糖水平,有助于减轻高血糖并发症。在此,我们通过分子建模系统地从天然产物库中系统地筛选了潜在的HPA抑制剂。建模包括分子对接,MM/GBSA结合能计算,MD模拟和ADMET分析。This research identified new- boulaside B, newboulaside A, quercetin-3-O- β -glucoside, and sasastilboside A as the top four potential HPA inhibitors from the library of natural products, whose Glide docking scores and MM/GBSA binding energies range from -9.191 to -11.366 kcal/mol and -19.38 to -77.95 kcal/mol。基于模拟,其中newboulaside b被发现为最佳的HPA抑制剂。在整个模拟过程中,偏差为3Å(Acarbose =3Å),它与ASP356,ASP300,ASP197,THR163,ARG161,ASP147,ALA106和GLN63相互作用。此外,全面的ADMET分析表明,它具有良好的药代动力学特性,没有急性毒性,适中的生物利用和非抑制剂的性质,并且对细胞色素p450。所有结果表明,Newboulaside B可能是针对2型糖尿病的药物发现的有前途的候选人。
1 2021-2025 年的成本增长目标值由成本增长目标实施委员会制定,如其 2021 年 1 月的建议报告中所述。https://www.oregon.gov/oha/HPA/HP/HCCGBDocs/Cost%20Growth%20Target%20Committee%20Recommend ations%20Report%20FINAL%2001.25.21.pdf 2 提供商纳入标准由成本增长目标实施委员会制定,如其 2021 年 1 月的建议报告中所述。https://www.oregon.gov/oha/HPA/HP/HCCGBDocs/Cost%20Growth%20Target%20Committee%20Recommend ations%20Report%20FINAL%2001.25.21.pdf OHA 每年都会发布符合纳入标准的提供商组织名单。 https://www.oregon.gov/oha/HPA/HP/Cost%20Growth%20Target%20documents/List-of-Provider-Organizations- for-CGT_01.31.2024.pdf
• 带有耐环境封装的压力传感器 • 操作范围:压力:300 –1200 hPa。温度:-40 – 85 °C。• 压力传感器精度:± 0.002 hPa(或 ±0.02 m)(高精度模式)。• 相对精度:± 0.06 hPa(或 ±0.5 m)• 绝对精度:± 1 hPa(或 ±8 m)• IPx8 认证:暂时浸泡在 50m 深的水中 1 小时 • 温度精度:± 0.5°C。• 压力温度灵敏度:0.5Pa/K • 测量时间:标准模式(16x)通常为 27.6 ms。最小值:低精度模式为 3.6 ms。• 平均电流消耗:压力测量为 1.7 µA,温度测量为 1.5 µA @1Hz 采样率,待机:0.5 µA。 • 电源电压:VDDIO:1.2 – 3.6 V,VDD:1.7 – 3.6 V。• 操作模式:命令(手动)、后台(自动)和待机。• 校准:使用系数单独校准以进行测量校正。• FIFO:存储最多 32 个压力或温度测量值。• 接口:I2C 和 SPI(均带有可选中断)• 封装尺寸:8 针 PG-VLGA-8-2,2.0 毫米 x 2.5 毫米 x 1.1 毫米。• 符合绿色产品(RoHS)标准
背景:先前的研究表明,特定下丘脑-垂体-肾上腺 (HPA) 基因的表观遗传变化可能预示创伤后应激障碍 (PTSD) 心理治疗的成功。最近的一项 3 期临床试验报告称,与安慰剂组治疗相比,3,4-亚甲二氧基甲基苯丙胺 (MDMA) 辅助疗法对治疗严重 PTSD 患者具有较高的疗效 (NCT03537014)。这提出了有关 MDMA 辅助疗法潜在机制的重要问题。在本研究中,我们检查了 MDMA 和安慰剂治疗前后三个关键 HPA 轴基因的表观遗传变化。作为母临床试验的一项试点子研究,我们使用唾液基因组 DNA 评估了治疗反应的潜在 HPA 表观遗传预测因子(MDMA,n = 16;安慰剂,n = 7)。评估了注释为三个 HPA 基因(CRHR1、FKBP5 和 NR3C1)的所有 259 个 CpG 位点的甲基化水平与治疗反应的关系,该反应通过临床医生管理的 PTSD 量表 (CAPS-5;总严重程度评分) 进行测量。其次,评估了预测治疗反应的位点的甲基化变化的组间差异(MDMA 与安慰剂)。
3 环境空气质量'·····························••II'•··························································································· 18 3.1 简介 ............................................................................................................. 18 3.2 HPA 中的排放源 ............................................................................................. 19 3.2.1 简介 ............................................................................................................. 19 3.2.2 工业部门 ............................................................................................. 20 3.2.2.1 发电 ............................................................................................. : ...................................................................................... 21 3.2.2.2 石油化工部门 ............................................................................. 22 3.2.2.3 初级冶金 ............................................................................................. 22 3.2.2.4 二次冶金、艾库鲁莱尼工业和普马兰加工业 ...................................................................................... 22 3.2.2.5 粘土砖制造 ...................................................................................... 23 3.2.2.6 露天煤矿开采 ...................................................................................... 23 3.2.2.7 HPA 以外的来源 ............................................................................. 25 3.2.3 运输 ............................................................................................................. 25 3.2.3.1 机动车 ............................................................................................. 25 3.2.3.2 机场 ............................................................................................. 28 3.2.4 家用燃料燃烧 ............................................................................................. 28 3.2.5 生物质燃烧 ............................................................................................. 32 3.2.6 废物处理和废物处置 ............................................................................. 35 3.2.6.1 垃圾填埋场 ............................................................................................. 35 3.2.6.2 焚化炉 ........................... ; .............................................................. 35 3.2.6.3 废水处理厂 .............................................................. 36 3.2.7 轮胎燃烧 ................................................................................................ 36 3.2.8 生物排放 ................................................................................................ 37 3.2.9 气味 .............................................................................................................. 37 3.2.1 0 农业粉尘 ............................................................................................. 38 3.2.11 燃烧的煤矿和阴燃的煤堆 ............................................................. 38 3.3 惠灵顿保护区的环境空气质量 ............................................................................. 39 3.3.1 简介 ...................................................................................................... 39 3.3.2 环境空气质量监测 ...................................................................................... 39 3.3.3 扩散建模 ............................................................................................. 41 3.3.4 模型估计值和监测数据的比较 ................................................................ 42 3.3.5 环境空气质量标准 ............................................................................................. 43 3.3.6 惠灵顿保护区的环境空气质量状况 ................................................................ 43