引用黄,Tony P.,Zachary J. Heins,Shannon M. Miller,Brandon G. Wong,Pallavi A. Balivada,Tina Wang,Ahmad S. Khalil等。“针对单核苷酸 - 吡啶二酰胺PAM的紧凑型Cas9变体的高通量连续演变。”nat Biotechnol 41,no。1(2022):96-107。doi:10.1038/s41587-022-01410-2
引用黄,Tony P.,Zachary J. Heins,Shannon M. Miller,Brandon G. Wong,Pallavi A. Balivada,Tina Wang,Ahmad S. Khalil等。“针对单核苷酸 - 吡啶二酰胺PAM的紧凑型Cas9变体的高通量连续演变。”nat Biotechnol 41,no。1(2022):96-107。doi:10.1038/s41587-022-01410-2
背景:罐头食品可能被微生物污染,主要是孢子形成细菌。本研究旨在提供有关通过伊拉克易卜拉欣·哈利尔国际边界进口的罐头食品的微生物负载的信息。方法:总共有119种包括35种家禽肉,40条鱼类和44种番茄酱的罐头食品样本,从易卜拉欣·哈利尔国际边界收集。使用常规方案,评估样品的总板数(有氧和厌氧微生物),变质的致病性和大肠菌菌生物。通过单向方差分析(ANOVA)起诉GraphPad Prism(V.5.01),对获得的结果进行了分析。结果:在37°C孵育时的总有氧板数为1.30±0.2 log sumoning单位(CFU)/g,鱼类的1.32±0.3 log cfu/g,番茄酱占2.11±0.5 log log cfu/g。另一方面,在肉样品中的厌氧板计数为0.95±0.2 log cfu/g,鱼类的1.08±0.2 log cfu/g,西红柿的评分为0.95±0.2 log cfu/g。枯草芽孢杆菌,肠分裂芽孢杆菌,灌注梭状芽胞杆菌和克雷伯氏菌属。。结论:比家禽肉类产品相比,西红柿和鱼类的微生物相对多。这些数据表明,加工线中的卫生标准差可能导致微生物控制损失。
10:50 15:50 20我们是否应该使用母体心血管参数在先兆子痫和FGR中进行治疗? Herbert Valensise(意大利)10:50 15:50 20我们是否应该使用母体心血管参数在先兆子痫和FGR中进行治疗?Herbert Valensise(意大利)
摘要动物神经系统在处理感官输入方面非常高效。神经形态计算范式旨在硬件实现神经网络计算,以支持构建大脑启发式计算系统的新解决方案。在这里,我们从果蝇幼虫神经系统中的感官处理中获得灵感。由于其计算资源非常有限,只有不到 200 个神经元和不到 1,000 个突触,幼虫嗅觉通路采用基本计算将外围广泛调节的受体输入转换为中央大脑中节能的稀疏代码。我们展示了这种方法如何让我们在脉冲神经网络中实现稀疏编码和刺激模式的可分离性提高,并通过软件模拟和混合信号实时神经形态硬件上的硬件仿真进行了验证。我们验证了反馈抑制是支持整个神经元群体中空间域稀疏性的中心主题,而脉冲频率适应和反馈抑制的组合决定了时间域中的稀疏性。我们的实验表明,这种小型的、生物现实的神经网络在神经形态硬件上有效地实现,能够实现全时间分辨率下感官输入的并行处理和有效编码。
光伏工业硅的再生浪费对高性能 - 锂离子电池阳极Kai Wang*,Xiao-bin Zhong,Yue-xian Song,Yao-hui Zhang,Yan-gang Zhang,Yan-Gang Zhang,Xiao-Gang You* Zhang, Xing-Liang Yao, Feng Li, Jun-Fei Liang * , Hua Wang * Abstract The diamond-wire sawing silicon waste (DWSSW) from the photovoltaic industry has been widely considered as a low-cost raw material for lithium-ion battery silicon-based electrode, but the effect mechanism of impurities presents in DWSSW on lithium storage performance is still not well understood, meanwhile, it迫切需要制定一种将DWSSW颗粒变成高性能电极材料的策略。在这项工作中,使用原位蚀刻技术对DWSSW中杂质的发生状态进行了仔细的分析。然后,小说Si@c@sio x@pal- n-c复合材料是通过原位封装策略设计的。获得的Si@C@SiO X@Pal -N -C电极在当前密度为1.0 A·G -1的情况下,初始库仑效率(ICE)的高第一容量为2343.4 mAh·G -1,最初的库仑效率(ICE)为84.4%,并且可以在200个周期后提供令人印象深刻的984.9 mAh·g -1。组合的数值模拟模型计算,Si 4+ /Si 0和Si 3+ /Si 0价比例的增加,SIO X层中的价状态态导致von Mises应力减少,这最终改善了循环结构稳定性。同时,Sio X层上的多孔2D-3D铝/氮(Al/N)共掺杂的碳层和纳米线,由于其发达的层次孔结构,可以为锂储存提供丰富的活性位点,从而促进离子运输。更重要的是,Si@c@sio x@pal-n-c // LifePo 4完整单元的性能在实际应用中显示出巨大的潜力。关键字锯硅废物;原位封装;铝/氮共掺杂;多孔碳纳米线;锂离子电池K. Wang*,X.-B。Zhong,Y.-X. 歌曲,Y.-H。张,Y.-G。张,X.-L。 Yao,F。Li,J.-F。 Liang*中国北大学能源与动力工程学院,中国030051,中国电子邮件:20210068@nuc.edu.edu.cn J.-F。 Liang电子邮件:jfliang@nuc.edu.cn H. Wang*北京大学,北京大学,北京100191,电子邮件:wanghua8651@buaa.edu.edu.cn X.-G。您*中国450001的郑州大学中心关键金属实验室:youxiaogang@zzu.edu.edu.cnZhong,Y.-X.歌曲,Y.-H。张,Y.-G。张,X.-L。 Yao,F。Li,J.-F。 Liang*中国北大学能源与动力工程学院,中国030051,中国电子邮件:20210068@nuc.edu.edu.cn J.-F。 Liang电子邮件:jfliang@nuc.edu.cn H. Wang*北京大学,北京大学,北京100191,电子邮件:wanghua8651@buaa.edu.edu.cn X.-G。您*中国450001的郑州大学中心关键金属实验室:youxiaogang@zzu.edu.edu.cn
摘要 本文探讨了人工智能在增强迪拜化妆品行业商业创新和创造力方面可以发挥的作用。该行业面临的许多关键事实问题包括个性化、供应链优化、产品配方、营销和品牌推广——这些问题仍然是道德和私密的。所解决的概念问题与创造力与自动化之间的平衡、数据质量和偏见、跨学科协作和变革管理有关。本文旨在了解人工智能驱动的解决方案如何有助于应对这些挑战,并成为迪拜化妆品行业创新的驱动力。本文考虑了以前关于人工智能在多个业务功能中的应用的相关文献,以及将人工智能与创造力和创新联系起来的一些概念框架。在这方面,混合方法将利用问卷、访谈和案例研究来分析人工智能采用、人工智能能力、数据驱动的决策和认知增强之间的相互联系,因为它们会影响企业的创新和创造力。这项研究可能会为迪拜化妆品公司带来重要的见解;同时,它将补充现有关于新兴技术如何帮助在商业活动中注入创新的文献。
2。Hamat,S.,Ishak,M.R。,Salit,M.S.,Yidris,N.,Showkat Ali,S.A.,Hussin,M.S.,Abdul Manan,M.S. 自聚合聚氨酯涂层对融合沉积建模(FDM)(2023)聚合物的聚合酸(PLA)机械性能(PLA)的机械性能的影响。 否。 2525Hamat,S.,Ishak,M.R。,Salit,M.S.,Yidris,N.,Showkat Ali,S.A.,Hussin,M.S.,Abdul Manan,M.S.自聚合聚氨酯涂层对融合沉积建模(FDM)(2023)聚合物的聚合酸(PLA)机械性能(PLA)的机械性能的影响。否。2525
如今,纳米技术已广泛传播,并且在许多领域,尤其是医疗领域中起着重要作用。纳米颗粒(NP)具有独特的物理化学特性,从而提供了其他活动,这些活动鼓励它们在许多应用中使用。纳米颗粒可以通过三种主要方法合成:化学,物理和生物学。最好的方法是被认为是绿色,可持续,环保和经济的生物综合。这取决于生物或其提取物,包括植物,细菌,藻类,真菌和酵母,而不是有毒化学物质。酵母是有前途的微生物,最近引起了许多研究人员的注意,发现它们在纳米颗粒的生物合成中的潜力,可以应用于不同的领域。许多研究证明了各种酵母菌物种合成各种金属和金属氧化物纳米颗粒的能力,无论是细胞内还是细胞外。这样的纳米颗粒包括银,金,硒,硫硫磺,锌硫,钯,钯,二氧化锰和二氧化钛纳米颗粒。酵母介导的纳米颗粒具有生物医学活性,例如抗癌,抗氧化剂,抗渗透性和抗菌剂。研究表明,酵母合成的纳米颗粒具有安全和无毒的特性。与使用细菌和真菌对NPS生物合成的研究相比,较少的研究重点是在NPS生物合成中使用酵母,这使其成为在生物合成和NPS应用中更科学发现的有前途的领域。本综述概述了涉及酵母介导的纳米颗粒的生物合成和生物医学应用的先前研究。
引言 全球卫生领域,特别是在受冲突影响的地区,面临着多重危机,其特点是严重的医护人员 (HCW) 短缺和分配不当。例如,在叙利亚,由于十多年的冲突,数以万计的医护人员被迫离开叙利亚。1 2019 年世界银行和联合国难民事务高级专员公署 (UNHCR) 的一份报告指出,从 2010 年到 2018 年,叙利亚的医生数量从每 1000 人 0.529 人减少到 0.291 人。2 在重症监护病房 (ICU)、肿瘤科、放射科和实验室服务等专业领域,这种稀缺性甚至更为严重。在这种情况下,利用人工智能 (AI) 不仅有益,而且必不可少,特别是在可以利用数据驱动的决策来改善临床护理的专业领域。在这篇评论中,我们探讨了人工智能在直接医疗服务中的应用以及人道主义领域的更广泛考虑,包括潜在的相关风险。