文章标题:药物重新培训中的机器学习和人工智能 - 挑战和观点作者:Ezequiel Anokian [1],Judith Bernett [2],Adrian Freeman [3],Markus List [2],LucíaPrietoSantamaría[4],Auntorrarhman Tanoli [4] Bonnin [1]分支机构:发现与转化科学(DTS),Clarivate Analytics,巴塞罗那(西班牙)[1],《系统生物学数据科学》,慕尼黑技术大学,慕尼黑技术大学,德国(德国)[2] Biopharmaceuticals R&D,阿斯利康,剑桥(英国)[3],EscuelaTécnicasuperior de gegenierossismorlosinformáticos,Madrid大学(西班牙)大学(西班牙) (FIMM),Hilife,Hilife,赫尔辛基大学(芬兰),Bioicawtech,赫尔辛基(芬兰)[5] [5] Orcid ID:0000-0003-0694-1867 [1] [1],0000-0001-501-5812-8013 [2] 0000-0002-0941-4168 [2], 0000-0003-1545-3515 [4], 0000-0003-2435-9862 [5], 0000-0001-5159-2518 [1] Contact e-mail: Sarah.bonnin@clarivate.com Journal: Drugrxiv review statement:手稿目前正在审查中,应由酌处权对待。手稿提交日期:2024年3月12日关键字:机器学习,神经网络,人工智能,药物repurost
利用细菌代谢物的免疫调节潜力为治疗各种免疫相关疾病的令人兴奋的可能性。但是,将这种潜力变成现实带来了重大挑战。本综述调查了这些挑战,重点是发现,生产,表征,稳定,配方,安全性和个人可变性限制。强调了许多代谢产物的有限生物利用度以及潜在的改进以及脱靶效应的潜力和精确靶向的重要性。此外,研究了肠道细菌代谢物与微生物组之间的复杂相互作用,强调了个性化方法的重要性。我们通过讨论宏基因组学,代谢组学,合成生物学和靶向递送系统的有希望的进步来结束,这对克服这些局限性并为细菌代谢物作为有效免疫调节剂的临床翻译铺平了希望。
摘要:必须持续提高不同种子的潜在生产力,必须实现农业生产的期望增长。同时,应在正确的时间向用户农民提供合适品种的质量种子,并以合理的成本来实现潜力。这需要对种子部门研究和开发,乘法和分布的子系统进行有效管理。有助于发展这些部门的政策环境至关重要。本文将审查公众,合作社和私营部门的种子企业的性质和功能,以确定与这些企业的管理和整个种子行业有关的问题。这也将建议采用有关政策环境的行业管理的替代方法,以实现经济上可行和技术自力更生的种子行业的长期目标,以应对新兴的挑战。
结论:调查结果表明,动态定价提供了重要的好处,例如收入优化,增强的竞争力和改善的库存管理。必须解决与所感知的公平,道德考虑和技术要求有关的挑战。该研究揭示了动态定价对高价值客户的假定影响,强调需要透明且公平的定价策略来维持其信任和忠诚度。这项研究强调了通过道德数据使用和连续的技术适应来解决这些挑战的重要性,以有效地优化定价策略。该研究对动态定价的战略意义提供了全面的理解,为学术界和实践提供了宝贵的见解。
文本中的文本为每个部分的开头用于提供各节的指导。这是“将地理空间信息应用于气候挑战”的高级未经编辑的副本。任务团队将在接下来的几个月内详细阐述并基于该草案,直到联合国全球地理空间信息管理(UN-GGIM)的第七级高级论坛(UN-GGIM)将于2024年10月8日至10日在墨西哥墨西哥城召集,设计为“ do-geospatience”的更新版本,是什么?首先在第十三届会议上介绍了委员会要求成员国分享其国家,地区和全球经验,证明了地理空间信息在气候和弹性方面的作用,建立了证据体。预计将通过交互式故事图(或类似平台)发布国家体验并提供,并在第七级高级论坛的领导中得到增强]
随着生态系统方法的越来越多地是可持续发展政策不可或缺的一部分,海洋和沿海生态系统服务(ESS)的经济估值已与告知决策过程的信息有关。通过包含书目计量,网络和内容分析的综合方法,该综述旨在分析在海洋和沿海ESS经济估值中,科学文献的进化趋势,主要的研究簇以及科学文献的研究差距。文献计量结果表明,研究领域正在经历不断发展的积极趋势,并且代表了一个具有挑战性的研究主题。从网络和关键字共发生的覆盖可视化中,研究结果全面解决了关键的与策略相关的问题。在内容分析中,对对科学研究产生最大影响的研究使用的估计ESS和经济评估方法进行了检查。发现,尽管研究提供了有价值的数据和见解,但由于上下文相关性和偏见问题,它们在决策中的实际适用性是有限的。总体而言,审查强调了对更好地为现实世界政策决策提供范式转变的需求,从而确定海洋空间规划(MSP)过程是在未来的研究和政策实施中弥合这些差距的关键框架。
在过去的二十年中,理论和建模已成为应用化学以及分析化学、合成化学和其他化学领域的主要研究课题之一。这是由于方法论、数值方法以及计算机软件和硬件的重大改进而成为可能的。许多实验研究开始包括计算建模。计算机模拟在现代化学中的作用不可低估,有效的建模和模拟在实际应用中起着至关重要的作用,因为它可以提供对实验的见解并帮助优化系统。具体而言,模拟越来越多地被用来用计算代替危险且昂贵的实验。同时,现代材料科学和生物学实验研究的令人瞩目的进步要求进一步发展和不断扩展当今计算化学方法的适用性和准确性。对大型生物分子、纳米粒子和界面进行快速而准确的定性和定量建模成为研究的主要焦点,这需要大量的计算工作,而且在目前的技术水平下并不总是能够实现。大多数计算化学问题都是关于求解分子中电子的薛定谔方程或经典粒子系统的牛顿运动方程。因此,数学应该在新的发展中发挥核心作用。本次研讨会的主要目的是根据顶尖科学家提供的经验分析计算化学的当前需求和期望,并与方法和计算软件开发人员进行讨论。以下部分以研讨会会议为名,包括初始演讲中提出的主题以及圆桌讨论和人际谈话中提出的主题。
本文探讨了阻碍高超音速技术发展的主要挑战,重点是热管理,推进系统和可操作性。超音速技术(定义为超过5马赫的飞行)为军事和商业航空的进步提供了重要的机会。尽管五十多年的发展和不断增长的投资,尤其是五角大楼的2025年预算要求(69亿美元)强调了高超音速技术的广泛采用仍然不完整。在超声速度下产生的极端热量需要先进的材料和冷却系统,以维持结构完整性并保护关键组件。此外,开发合适的推进系统,例如Ramjets和Scramjets,对于实现和维持高超音速速度至关重要,但是这些系统目前在效率和应用方面面临限制。最后,本文讨论了与超声飞行相关的可操作性约束和雷达检测问题,这构成了重大的操作挑战。正在进行的国际竞争,特别是与俄罗斯和中国的竞争,强调了克服这些挑战以推进高超音速技术的战略重要性。调查结果表明,尽管已经取得了重大进展,但进一步的研发对于在军事和商业环境中都充分发挥了高超音速技术的潜力至关重要。