摘要:无机选择性接触和卤化物钙钛矿 (HaPs) 之间的界面可能是使用这些材料制造稳定且可重复的太阳能电池的最大挑战。NiO x 是一种具有吸引力的空穴传输层,因为它适合 HaPs 的电子结构,而且高度稳定且可以低成本生产。此外,NiO x 可以通过可扩展且可控的物理沉积方法(如射频溅射)制造,以促进可扩展、无溶剂、真空沉积的基于 HaP 的太阳能电池 (PSC) 的探索。然而,NiO x 和 HaPs 之间的界面仍然无法得到很好的控制,这有时会导致缺乏稳定性和 V oc 损失。在这里,我们使用射频溅射来制造 NiO x,然后在不破坏真空的情况下用 Ni y N 层覆盖它。Ni y N 层在 PSC 生产过程中对 NiO x 进行双重保护。首先,Ni y N 层保护 NiO x 免受 Ar 等离子体将 Ni 3+ 物种还原为 Ni 2+ 的影响,从而保持 NiO x 的导电性。其次,它钝化了 NiO x 和 HaPs 之间的界面,保持了 PSC 的长期稳定性。这种双重效应将 PSC 效率从平均 16.5%(创纪录电池 17.4%)提高到平均 19%(创纪录电池 19.8%),并提高了器件稳定性。关键词:卤化物钙钛矿、太阳能电池、氧化镍、氮化镍、钝化、界面■简介
• 维珍银河于 6 月 8 日首次试飞;德尔塔级宇宙飞船飞行暂停 • 继续进行 STEM 之旅和课堂参观 • 继续进行小型无人机测试 • 继续进行电动汽车公司测试 • 商业摄影和电影拍摄现场参观 • 对总体规划项目进行最后审查 • 高空平台系统 (HAPS) 无人机测试;2 架 HAPS 同时在空中 • 美国空军雷鸟飞行表演队返回 • 蜂窝电话塔完工,但等待运营商安装 • 继续与 NewSpace Nexus、NM Space Valley、Borderplex Alliance 等公司合作
高比功率或功率质量比是航空航天应用光伏 (PV) 的关键要求。有机太阳能电池 (OSC) 具有吸收系数高、与柔性基板兼容、重量轻等优点。此外,最近 OSC 通过结合非富勒烯基小分子受体实现了超过 20% 的功率转换效率 (PCE),相信可以获得高比功率。要进入市场,高空平台站 (HAPS) 可能是第一个切入点。在这项工作中,我们探索并比较了使用相同供体但不同受体的两种高性能 OSC 在模拟 HAPS 环境中的原位性能,其中压力、温度和光照条件受到控制。我们发现受体的使用会导致低温下性能的巨大差异。
摘要:缺氧诱导因子 1α (HIF-1 α ) 是一种调节细胞对缺氧反应的转录因子,在所有类型的实体肿瘤中均上调,导致肿瘤血管生成、生长和对治疗的抵抗。肝细胞癌 (HCC) 是一种血管丰富的肿瘤,也是一种缺氧肿瘤,因为与其他器官相比,肝脏处于相对缺氧的环境。经动脉化疗栓塞术 (TACE) 和经动脉栓塞术 (TAE) 是局部区域疗法,是 HCC 治疗指南的一部分,但也会加剧肿瘤缺氧,如肝栓塞后 HIF-1 α 上调所见。缺氧激活前药 (HAP) 是一类新型抗癌剂,在缺氧条件下被选择性激活,可能用于缺氧 HCC 的靶向治疗。针对缺氧的早期研究显示出有希望的结果;然而,还需要进一步研究来了解 HAPs 联合栓塞治疗 HCC 的效果。本综述旨在总结目前关于缺氧和 HIF-1 α 在 HCC 中的作用以及 HAPs 和肝脏栓塞的潜力的知识。
RUI MAO 是新加坡南洋理工大学的研究员、首席研究员。他获得了阿伯丁大学的计算机科学博士学位。他的研究兴趣包括计算隐喻处理、情感计算和认知计算。他和他创立的公司开发了第一个使用现代语言搜索中国古诗词的神经网络搜索引擎 (haps://wensousou.com),以及一个用于语言和概念隐喻理解的系统 (haps://metapro.ruimao.tech)。他以第一作者的身份在顶级会议和期刊上发表了多篇关于情感计算的论文,例如 ACL、AAAI、IEEE ICDM、InformaRon Fusion 和 IEEE TransacRons。他曾担任 COLING 和 EMNLP 的领域主席以及 Expert Systems、InformaRon Fusion 和 NeurocompuRng 的副主编。
摘要 自由空间光通信正在成为一项成熟的技术,近几年已在太空中进行了多次演示。日本国家信息通信技术研究所 (NICT) 在过去三十年中进行了多项最重要的在轨演示。然而,这项技术尚未得到广泛的商业应用。为此,NICT 目前正致力于开发一种小型激光通信终端,该终端可安装在超小型卫星上,同时还兼容各种其他不同平台,满足广泛的带宽要求。该设计采用的策略是创建一个多功能激光通信终端,无需大量定制即可在多种场景和平台上运行。本文介绍了 NICT 目前为开发该终端所做的努力,并展示了已经为初步测试开发的原型,并对其进行了描述。这些测试将首先包括使用无人机进行性能验证,目的是将原型安装在高空平台系统 (HAPS) 上,以建立 HAPS 与地面之间的通信链路,然后与地球静止轨道 (GEO) 进行通信,从而覆盖广泛的操作条件。对于这些测试,在前一种情况下,无人机的终端是一个简单的发射器,而 HAPS 的终端是可移动的地面站;在后一种情况下,终端是 GEO 卫星 ETS-IX,预计 NICT 将于 2023 年发射。关键词:自由空间光通信、无线通信、空间激光通信、小型化终端
目前,NAL 系统距离这些目标还很远。本月试飞的 HAPS 是缩小版的 HAPS。该系统长 5 米,翼展 11 米,重 23 公斤,可升至 3 公里左右,并停留约 8 小时。参与该项目的科学家告诉《印度时报》,这个原型“达到或超过了为其设定的所有性能指标”。然而,一系列测试已经计划好,预计到 2027 年,将最终打造出一架翼展 30 米(几乎与波音 737 一样大)的全机身飞行器。它将能够升至 23 公里,并在空中停留至少 90 天。CSIR-NAL 主任 Abhay Pashilkar 表示:“世界上很少有经过验证的系统能够做到这一点,考虑到各种潜在应用,印度应该能够拥有这样的能力。”
摘要:高空平台(HAP)是飞行器,通常是无人飞艇或位于平流层 20 公里以上高度的飞机,用于组成电信网络或进行遥感。在 1990 和 2000 年代,启动了多个项目,但很少有项目继续进行。2014 年,两家大型互联网公司(谷歌和 Facebook)宣布投资新的 HAP 项目,为没有通信基础设施(地面或卫星)的地区提供互联网接入,这再次引起了人们对 HAP 发展的关注。本文旨在概述 HAP 的历史、当前的最新技术(2016 年 4 月)、技术趋势和挑战。本评论的主要重点是与航空平台直接相关的技术,这些技术属于航空工程知识领域,而不是详细介绍电信领域的各个方面。
本文介绍了一种集成系统,通过战略性地管理 k-out-of-n :G,COLD 系统中电池的修复和补充,确保系留高空平台系统 (HAPS) 不间断电源供应。我们假设电池是相同的,它们的寿命彼此独立且呈指数分布。电池因故障而独立劣化并等待修复。当工作电池数量减少到 L ð L < n Þ 时,修复设施启动,当运行电池数量下降到 N ð N < L Þ 时,下达 n −k + 1 块电池的补货订单。我们推导出系统状态概率的显式解并分析关键性能指标。此外,我们采用粒子群优化 (PSO) 算法来确定所提优化问题的最佳成本,并使用 Morris 方法进行灵敏度分析。结果为 HAPS 的有效电池管理策略提供了见解,确保可靠的电源供应同时最大限度地降低成本。 [DOI: 10.1115/1.4067545]