当一家信息、通信和技术 (ICT) 公司在乌克兰这样的国际武装冲突中运营时,他们应该做什么?科技公司高管应该如何应对政府的紧急要求(这些要求往往相互冲突),即传播或审查战争背景下出现的网络内容,包括虚假信息?他们又应该如何应对政府要求访问用户的个人数据或通信,这些要求表面上是为了保障安全,但实际上却存在滥用的可能性?政府对 ICT 公司提出了苛刻的要求,试图对信息自由流动和数据隐私施加严格的限制,这些公司通过后者的数字和社交媒体平台以及移动网络。这迫使公司制定新的做法和政策来响应这些要求以及产生这些要求的紧急情况。为了协助这一进程,本文
退役指挥官罗伯特·尼尔森少校是德克萨斯州布利斯堡军士长学院的课程开发人员。过去 30 年来,他担任过各种领导职务和职位,从班长到指挥官军士长。尼尔森是第 63 届军士长课程毕业生,也是麻省理工学院第 21 届研讨会研究员。他拥有华盛顿州立大学社会科学学士学位、图罗国际大学健康科学硕士和工商管理硕士学位、宾夕法尼亚州立大学教育硕士学位和范德堡大学教育博士学位。
关于作者 Katarzyna Zysk 是挪威国防研究所 (IFS,自 2007 年起) 的国际关系和当代史教授,该研究所是奥斯陆挪威国防大学学院的一部分。在 IFS,她还担任副主任、安全政策中心主任、研究主任,并担任挪威国防大学学院代理院长。Zysk 教授曾担任斯坦福大学国际安全与合作中心 (CISAC)、牛津大学战争特征变化中心 (CCW)、美国海军战争学院海战研究中心和巴黎政治学院 (Sciences Po) 的客座教授。目前,她是新美国安全中心俄罗斯跨大西洋论坛核心小组成员、大西洋理事会非常驻高级研究员和跨大西洋威慑对话倡议顾问委员会成员。她的学术背景是国际关系和国际史。继 2006 年完成关于北约扩张的博士论文之后,她发表的研究成果主要集中在安全、国防和战略研究方面,特别关注俄罗斯的军事战略和战争、海军战略、核威慑、海上安全和北极地缘政治,以及国防创新和突破性技术。@Katarzyna_Zysk。
简介 聋人和听力障碍 (DHH) 飞行员可以轻松在不受控制的空间飞行,在那里不需要使用无线电与空中交通管制 (ATCO) 进行通信。但是,DHH 飞行员通常无法在需要使用无线电的受控空域中独自飞行。通用航空飞行员的一项重要服务是 ATIS(自动终端信息服务),这是一种语音消息,包含基本信息,例如天气数据、活动跑道、可用进场和飞行员所需的任何其他信息。飞行员通常在联系管制之前收听 ATIS,这可以减少管制员的工作量并降低频率占用率。但是,由于这是一项基于音频的服务,因此 DHH 飞行员目前无法使用。D-ATIS(数据链路)允许传输书面信息,但目前仅由大型机场使用。因此,DHH 飞行员和空中交通管制员之间的替代通信方法已经开发出来。DHH 飞行员目前使用的通信方法是光枪信号,这是 ATCO 在通信故障期间与飞机通信的工具。这些灯发出不同颜色的光束,可以闪烁或稳定,对飞行中或地面上的飞机有不同的含义。第二种方法依赖于机上的听力副驾驶(无线电副驾驶)与 ATCO(Major 等人,2018)通信或收听 ATIS,然后 ATIS 通过在白板上书写将音频信息传输给飞行员。在大型、拥挤机场的受控空域中,这些方法并不总是可行的,因此成为 DHH 飞行员从事航空运输飞行员工作或非商业活动的主要障碍 (Tinio,2018)。FANS4all 协会(未来全民空中导航系统,https://fans4all.org/)旨在让 DHH 飞行员能够在受控空域飞行。一个挑战是 DHH 飞行员对 ATIS 的可访问性。在本文中,我们重点关注使 ATIS 在用户界面方面更易于访问的工作(即呈现给 DHH 飞行员的信息)。
先前的研究表明,线粒体不仅在癌细胞(CSC)代谢中起核心作用,而且在CSC干性维持和分化的调节中起着核心作用,这是癌症进展和治疗性抗性的关键调节剂。因此,预计CSC中线虫的调节机制的深入研究有望为癌症治疗提供新的靶标。本文主要介绍线粒体及其相关机制在CSC Stemness维持,代谢转化和化学上的作用。讨论主要关注以下方面:线粒体形态结构,亚细胞定位,线粒体DNA,线粒体代谢和线粒体。手稿还描述了针对线粒体靶向药物的最新临床研究进展,并讨论了其目标策略的基本原理。的确,了解线粒体在CSC规范中的应用将促进新型CSC靶向策略的发展,从而显着提高癌症患者的长期存活率。
•spodumene:富含脚本的沉积物构成了当前挖掘的硬石锂沉积物的大部分。这是一种硅酸锂硅酸盐矿物质,通常在pegmatites中的粗粒晶体中形成。•petalite:Petalite是一种铝硅酸锂矿物质,通常是Pegmatite系统中的次要矿物。它的铁通常低于spodumene,对于陶瓷应用而言是优选的。•赤铁矿:鳞石是云母家族中的矿物质,具有复杂的化学配方,其中包含各种浓度的钾,锂,铝和二氧化硅。它可以含有氟,其高浓度通常是锂加工中的阴性。•Zinnwaldite:Zinnwaldite是另一种云母矿物质,以及钾,锂,铝和二氧化硅也含有铁。它也可能包含氟。
如今,微电子技术需要寻找新材料,包括用于创建结构的掩模。中间硬掩模策略是实现微电子制造中光刻和蚀刻之间良好平衡的关键问题之一。微电子和光伏技术中一个有趣的挑战是在 Si 衬底上创建间距垂直取向的硅阵列,用于多功能半导体器件。制造这种结构仍然是一个严重的技术问题,需要寻找新的方法和材料。在这项工作中,我们建议使用钪作为硅上的新硬掩模材料,因为它具有高抗等离子化学蚀刻性和低溅射系数。我们已经证明,对厚度为几纳米的钪层进行湿法蚀刻可用于在硅上获得分辨率高达 4 微米的图案结构,这对于湿法蚀刻方法来说是一个很好的结果。在选定的等离子蚀刻条件下,与其他金属掩模相比,钪是一种具有极佳抗性的硅掩模,蚀刻速率最低。因此,钪硬掩模可以为形成不同的微尺度地形图案开辟新的可能性。
空气断路器多年前投入使用可能无法提供当今要求的可靠性和安全保证。确保人,装备和过程得到适当保护是一个越来越多的关注。由于缺乏材料或零部件过量时,维护不足以使工作套件是最好的解决方案。ABB低压服务提供了一种独特的方法,可以通过更改磨损或过时的零件,同时维护原始的工厂和设备配置,从而将安装的硬件和软件提高到下一代。该套件在ABB SACE DI Vision Lab中进行了测试,该实验室得到了Accredia的认可,并由重要的国际认证机构(例如Acae/Lovag,Ance,Ance,ASTA,ETL Semko,ul,ul,CSA,CSA和海军注册)所承认。
使用量子计算机现在可作为云服务可用,可以显示一个可以显示量子优势的应用程序。自然,数据管理是候选领域。工作解决方案需要设计混合量子算法的设计,其中量子计算单元(QPU)和经典计算(通过CPU)合作解决问题。此演示说明了针对数据库架构匹配的NP-HARD变体的端到端解决方案。我们的演示旨在进行教育(希望鼓舞人心),使参与者能够探索关键的设计决策,例如基于QPU和CPU计算的阶段之间的移交。它还将允许参与者通过嬉戏的互动体验动手实践 - 问题尺寸超过当今QPU的局限性。