Vincenzo Pecunia 1*,S。RaviP. Silva 2*,Jamie D. Phillips 3,Elisa Artegiani 4,Alessandro Romeo 4,Hongjae Shim 5,Jongsung Park 6,Jin Hyeok Kim 7 Z 12,Marina Freitag 12,Jie Xu 13,Thomas M. Brown 13,Benxuan Li 14,Yiwen Wang 15,Zhe Li 16,Bo Hou 17,Behma和Emmay Emmay 18,Veronika Kovacova,20,sebastjan Glinsek 20,Sehini Kar-Narayan 22,Yong bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin bin, Uskaitė24,Stephan Barth 24,25 Feng,Wenzhu,Costa Wenzhu,26 28,Javier del Campo 29,30,Senentxu Lanceros-Mendez(27-30),Hamideh Khanbareh,31周35,Trinny Tat 35,Il Woo Ock 35,Jun Chen 35,Sontyana Adonijah Graham 36,Jae Su Yu 36,Ling-Zhi Huang 37,Dan-Dan Li 37,Ming-Guo MA 37 Atzidis 40,Hongyao Xie 40,小lei shi 41,Zhi-gang Chen 41,Alexander Riss 42,Michael Parzer 42,Fabian Garmroudi 42,Ernst Bauer 42,Madison Zali 43,Madison Zali 43 Uzlarich 46,Ctirad Uher 47,Jinle Lan 48,Yuan-Hua Lin 49,Luis Fonseca 50,Alex Morata 51,Mariz Guillov,53 David Berthebaud 54,Takao Mori 55,56,Robert J. Quinn 57,Jan-Willem 57,Jan-Willem 57 phllick 57 phllipl phllipp pland Trand Lenoir 58,Deepak Venkatesh,Zhao Zhanner 266,Gang Zhang 63,Yoshiyuki Nonoguchi 64,Bob C. Schroeder 65,Emiliano Bilotti 66,Akanksha K. Menon 67 ,Fabrizio Viola 71,Mario Caironi 71,Dimitra G. Georgiadou 72,Li ding 73,Lian-Mao Peng 73,Zhenxing Wang 74,Muh-Dey Wei 75,Magato Negra 75,Renato Negra 75,Max C. Lemme 74,Mahme 74,Mahme 74,MAHMOUD 77,MAHMOUN 77,277,277,taby,Taoby,Taoby,Taoby,277,Moh,277,taby,277,taby,277,taby,277,taby,taby,277奥西78
在肯尼亚的各个世代进行了水的收集和储存,包括使用公共和私营部门的小土壤路堤和大坝收集溪流和河水的手工选择。肯尼亚的社区和家庭在小规模上也实施了各种雨水收集策略,屋顶和雨水径流。水对于国家的人类福利和经济发展至关重要。除了通过基础设施发展和非结构性干预措施降低与水相关的风险外,国内,经济和生态系统维持水的可用性仍然对肯尼亚的发展优先事项至关重要。`水是成就粮食安全,经济适用房,制造业和普遍健康的“四大”议程的推动者。这种国家水收集和存储战略(NWHS)是及时的,因为我们在水部门改革到达国家政府和县政府的关键阶段时正在实施它。该策略将该部作为水收集和存储的整体领导者作为子行业。在肯尼亚宪法2010年的考虑方面已开发了这种NWHS,该宪法将水视为基本的人权。该计划也已与;可持续发展目标(SDG),非洲议程2063,2030年愿景,国家水总规划,中期计划(MTP III),《 2016年水法》,《四大议程》。它还提高了其战略计划中所阐明的水,卫生和灌溉愿景和使命。关于2018年国家水政策,2010年跨界水政策和水储存(WHS)政策的会议论文也已明确告知了NWHSS的发展。
压电能量收集可从振动、物体和身体的运动、撞击事件和流体流动等多种来源捕获机械能,以产生电能。这种能量可用于支持无线通信、电子元件、海洋监测、组织工程和生物医学设备。已经生产了各种自供电压电传感器、换能器和执行器用于这些应用,但是,增强材料压电性能以提高设备性能的方法仍然是材料研究的一个具有挑战性的前沿。在这方面,可以设计或故意设计材料的固有极化和特性来增强压电产生的能量。本综述深入探讨了先进材料(包括钙钛矿、活性聚合物和天然生物材料)中的压电机制,重点介绍了用于增强压电响应并促进其集成到复杂电子系统中的化学和物理策略。通过强调主要性能指标、驱动机制和相关应用,概述了能量收集和软机器人方面的应用。讨论了进一步改善材料和设备性能的关键突破和有价值的策略,并对下一代压电系统的要求以及未来的科学和技术解决方案进行了批判性评估。
本节简要概述了不同的盾牌,它们为其设计的用途以及它们提供的目的:•探索器工具包的能量收集盾牌始终需要连接到探险家工具包才能操作。盾牌被签署,以提供探险家工具箱板上的多协议无线SOC。•双收割机盾牌设计为具有一个或两个能源,一个存储元件,具有或没有输入适配器。要添加外围设备,可以选择将Mikrobus点击板TM与双收割机盾1一起添加到板堆中。•动力学按钮屏蔽提供了无线SOC为无需其他组件提供动力所需的一切。一旦将与设计的固件应用程序相结合,它将只能开箱即用。该板不允许与其他点击板一起进一步堆叠TM
摘要 - 在本文中,提出了一个具有单个二极管装置的环境动力收割机,以同时以混合和合作的方式同时清除射线传频(RF)和热能。理论上通过提出的二极管模型对此合作收获过程进行了检查,然后通过模拟和测量进行验证。在拟议的合作功率收割机中,来自热源的收获直流电压用于偏向二极管,以提高二极管的RF-DC-DC功率转换效率(PCE)。开发了Schottky二极管的准确分析模型,用于指定RF-TO-DC PCE的约束参数,并分别在低RF功率范围(25dbm)中准确预测二极管的性能。发现计算的结果与高级设计系统(ADS)中的谐波平衡模拟器获得的模拟结果达成了良好的一致性。进行示范和验证,根据二极管SMS7630设计和原型设计了拟议的混合合作功率收割机。当二极管的两个注射功率源均为30dbm时,用RF-DC PCE获得了总测量的输出直流电源。此外,具有和不具有匹配网络的Rectennas均已制造和测试。通过消除L匹配网络,发现Rectenna提供更高的直流输出功率。拟议中的混合合作功率收割机希望在带有RF覆盖范围和温度梯度的环境大气中找到潜在的现实世界应用。它不仅有助于产生更高的功率,而且还提供了一种可靠的方法来提高直流电力生产的弹性。
电源控制通常用于确保通信系统中有效的资源液化。由于环境能源的间歇性和随机性,其在能源收集通信的新兴范式中变得更加重要。本专着提供了基本功率控制策略及其性能分析的重新查看,以独立且相同分布的能量到达的基本设置的基本环境。分别考虑了三种不同的设置,即离线功率控制,线电源控制和使用LookAhead的功率控制,分别与对能量到达过程的非因果,因果关系和部分非因果知识的案例相对应。提出了最佳离线电源控制策略的完整表征。在线设置中,将重点放在贪婪的政策上,该政策在低温容量制度中是最佳的,并且普遍近乎最佳的策略,其中包括Maximin Optimal
Glasgow, G1 1XL, UK Corresponding authors, e-mail: * arnaoutakis@hmu.gr , # bryce.richards@kit.edu Abstract Upconversion – the absorption of two or more photons resulting in radiative emission at a higher energy than the excitation – has the potential to enhance the efficiency of solar energy harvesting technologies, most notably photovoltaics.但是,所需的超高光强度和灯笼离子的狭窄吸收带限制了有效的太阳能利用率。在本文中,我们报告了令人兴奋的上转换器,其浓度的阳光在通量密度高达2300个太阳下,辐射仅限于硅带隙以下的光子能量(对应于波长= 1200 nm)。上转换到= 980 nm是通过在荧光聚合物基质中使用六角形的Erbium掺杂钠yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium yttrium。上转换具有与辐照度的非线性关系,因此在高辐照度下,在过程变为线性的情况下发生阈值。对于β -Nayf 4:25%ER 3+,我们在320个太阳下浓缩的阳光下发现了两个光子阈值。值得注意的是,该阈值低于相应的激光激发,并且可能与所有共同激发的ER 3+离子水平和激发的吸收有关。这些结果突出了一条利用光伏的太阳光谱的途径。简介上转换(UC)是一个非线性光子过程,可以添加来自两个或多个较低能量光子的能量,从而导致单个较高能量光子的发射[1]。第一个激发态通过基态吸收(GSA)填充。uc已在激光器[2],生物医学成像[3],[4],抗爆炸[5],[6],塑料回收[7]和太阳能收获[8],[9],[9],[10]中进行了研究。对于光伏,这可能是绕过太阳能光谱中与子频带光子相关的太阳能电池传输损失的一种有前途的方法[11]。计算表明,在理想情况下,UC可以提高单连接太阳能电池的理论上效率(Shockley-Queisser)极限从33%到48%[11]。有效的稀有地球[12],[13],[14]上转换器的外部转换器高达9.5%,外部UC量子产量(EUCQY),这是外部发射与入射光子的比率。稀有的稀土上转换器具有较高的近红外(NIR)Eucqy的表现最高的硅[14],[15]和钙钛矿太阳能电池[16]。在三价灯笼离子中,UC通过部分填充的4F壳中的辐射过渡发生。额外光子的激发态吸收(ESA)可以产生更高的激发态。然而,可以通过第一个激发态以第一个激发态的能量传递向上转换(ETU)来进行更有效的过程,尤其是在较低的激发能力密度下,如图1(a)。一个离子的能量被捐赠给附近的离子,将其推广到更高的亚稳态状态,而敏化剂的能量又回到基态。
通过利用铁电/铁弹性切换,在压电传感器中提高了提高功率输出和能量密度。但是,一个问题是,稳定的工作周期通常不能仅由压力驱动。通过在部分螺旋的铁电中使用内部偏置场来解决此问题:材料状态的设计使得压力驱动机械加载过程中的铁弹性切换,而残留场在卸载过程中恢复了极化状态。但是,尽管已验证了此方法,但尚未系统地探索具有最佳性能的工程材料状态的设备。在这项工作中,使用部分固定(预先pol的)铁电中的内部偏置场来指导极化开关,从而产生有效的能量收集循环。设备在1-20 Hz的频率范围内进行了测试和优化,并系统地探索了制造过程中预拆平程度对能量收集性能的影响。发现,将铁电陶瓷预先固定到约25%的完全悬垂状态中会导致一种设备,该设备可以在20 Hz处产生大约26 mW cm-3的活性材料的功率密度,先前工作的改善和比常规PiezoeColectrics的高度提前的命令。但是,最大化功率密度可能会导致残余压力,在准备过程中或服务过程中会损害设备的危害。研究了制造成功率与预拆平水平之间的关系,这表明较高的预拆平程度与较高的存活率相关。这为能量转换与设备鲁棒性平衡提供了基础。
了解直升机旋转部件上的运行负载对于基于状态的维护 (CBM) 和健康使用监测系统 (HUMS) 非常重要。过去,需要部署滑环限制了对旋转部件的监测。无线技术消除了滑环,但电池维护问题仍然是一个主要障碍。本文报告了下一代无线传感器,它通过使用压电材料将应变能转换为存储的电能来消除电池维护。存储的能量用于测量、记录和传输应变和负载信息。已经开发出原型能量收集无线俯仰链路传感系统。在低使用率直升机运行条件下,消耗的能量小于收集的能量,使应变和负载传感器能够永久运行而无需电池维护。打破了监测直升机旋转部件的障碍,该技术有可能大大提高未来的 HUMS 能力。