人工智能:回顾和在制药领域的广泛应用 More Swati K. 助理教授,NGSPM 药学院,印度纳西克 电子邮件 ID:moreswati2711[at]gmail.com 摘要:在生命科学领域,下一个前沿是制药领域的人工智能。人工智能具有解决问题的能力,属于计算机和工程科学的分支。基本上,人工智能是机器学习程序,如今制药行业非常需要它。在制药研究和开发中,药物发现部门应该需要它来预测新药分子的开发,在药物和其他生物分子模型的评估研究中也更需要它。此外,人工智能的使用还可以改善药物发现过程、临床试验过程和进一步的研究。关键词:人工智能 (AI) 需求、机器学习程序、流程简化 1.简介 变化是每个人生活中的重要事项,例如,变化在各个流程和各个部门都很重要,因此在制药科学和医学领域,药物发现方面、化学产品的配制以及新化学实体的制造过程也非常需要变化。人工智能是创新过程之一,它可以改变药品的各个方面,从而造福于制药科学。在药品的机械和化学创新中,需要开发新颖和创新的原理和解释技术。使用自动化算法程序进行各种试验也是非常有益的,这是制药科学中人工智能 (AI) 最重要的部分。
用于自由行为受试者的功能性大脑监测的可穿戴技术将促进我们对认知处理和适应性行为的理解。现有技术缺乏这种能力,或者需要侵入性程序和/或以其他方式阻碍在社交行为条件、运动和睡眠期间进行大脑评估。为此,我们开发了一个完整的系统,结合了脑血流量 (CBF) 测量、O 2 和 CO 2 供应以及行为记录,用于清醒、自由行为的小鼠。创新的弥散散斑对比流量计 (DSCF) 设备和相关硬件被小型化并针对小受试者应用进行了优化。安装和使用这种可穿戴、无光纤、近红外 DSCF 头台/探头不需要开颅、侵入性探头植入或对清醒动物进行约束。使用新的 DSCF 设计与光学标准进行的测量之间存在显著相关性。该系统成功且反复地检测到麻醉和移动小鼠对 CO 2 诱导的高碳酸血症的 CBF 反应。在自然行为过程中收集 CBF 和活动信息可以提供真实的生理结果,并为探索它们与病理生理状况的相关性开辟道路。
疫苗接种通过产生可以识别和降低COVID-19病毒风险的抗体来增强免疫力。当一个人患有共同感染时,其免疫系统会产生相同的抗体。在共vid感染抗体水平后的几周内,此时疫苗接种并不是很有帮助。最好随着这些抗体随着时间的推移而开始下降。
1 佛罗里达大学电气与计算机工程系,佛罗里达州盖恩斯维尔 32611,2 佛罗里达大学呼吸研究与治疗中心,佛罗里达州盖恩斯维尔 32611,3 佛罗里达大学物理治疗系,佛罗里达州盖恩斯维尔 32611,4 佛罗里达大学生理学与功能基因组学系,佛罗里达州盖恩斯维尔 32611,5 佛罗里达大学生物统计学系,佛罗里达州盖恩斯维尔 32611,6 佛罗里达大学麦克奈特脑研究所,佛罗里达州盖恩斯维尔 32611,7 佛罗里达大学 J. Crayton Pruitt 家族生物医学工程系,佛罗里达州盖恩斯维尔 32611,8 佛罗里达大学材料科学与工程系,佛罗里达州盖恩斯维尔 32611,9 佛罗里达大学神经病学系,佛罗里达州盖恩斯维尔 32611,10 佛罗里达大学神经科学系,佛罗里达大学,佛罗里达州盖恩斯维尔 32611
您在将疫苗接种卡上传到 UTRGV 疫苗门户时遇到问题吗?请参阅下面的分步过程。如果您是第一次创建疫苗接种门户条目,则可能需要最多 24 小时才能更新您的个人资料,以便您提交员工加强激励计划的申请。如果您遇到技术问题或需要帮助,请发送电子邮件至 umc@utrgv.edu
标题 1 闭环颈部硬膜外刺激在自由活动大鼠脊髓损伤后诱发呼吸神经可塑性 2 3 缩写标题 4 硬膜外刺激诱发呼吸神经可塑性 5 6 作者姓名及所属机构 7 Ian G. Malone 1,2 , Mia N. Kelly 2,3 , Rachel L. Nosacka 4 , Marissa A. Nash 4 , Sijia Yue 5 , Wei Xue 5 , Kevin J. Otto 1,2,6,7,8,9,10 , 8 和 Erica A. Dale 2,4,6 9 1 佛罗里达大学电气与计算机工程系,佛罗里达州盖恩斯维尔 32611 10 2 佛罗里达大学呼吸研究与治疗中心,佛罗里达州盖恩斯维尔 32611 11 3 佛罗里达大学物理治疗系,佛罗里达州盖恩斯维尔 32611 12 4 佛罗里达大学生理学和功能基因组学系,佛罗里达州盖恩斯维尔 32611 13 5 佛罗里达大学生物统计学系,佛罗里达州盖恩斯维尔 32611 14 6 佛罗里达大学麦克奈特脑研究所,佛罗里达州盖恩斯维尔 32611 15 7 J. Crayton Pruitt Family 佛罗里达大学生物医学工程系,佛罗里达州盖恩斯维尔 32611 16 8 佛罗里达大学材料科学与工程系,佛罗里达州盖恩斯维尔 32611 17 9 佛罗里达大学神经病学系,佛罗里达州盖恩斯维尔 32611 18 10 佛罗里达大学神经科学系,佛罗里达州盖恩斯维尔 32611 19 20 通讯作者电子邮件地址 21 电子邮件:ericadale@ufl.edu 22 23 内容信息 24 图表数量:9 25表格数量:0 26 多媒体数量:0 27 字数:28 x 摘要:235 29 x 意义陈述:119 30 x 引言:660 31 x 讨论:2,003 32 33 致谢 34 作者要感谢佛罗里达大学 Dale 实验室、NeuroProstheses 研究实验室和 35 Mitchell 实验室的所有成员提供的技术指导。我们感谢 Raphael Perim 博士、Kaitlynn Olczak 博士和 Yasin Seven 博士提供的技术支持、帮助和指导;感谢 Larry Shupe 博士、Chet Moritz 博士和 Eberhard Fetz 博士提供的 Neurochip3 硬件并协助排除故障;最后,感谢 Jennifer Bizon 博士、Jada Lewis 博士、Peter Sayeski 博士、38 David Fuller 博士、Gordon Mitchell 博士、Charlie Wood 博士和 Stephen Sugrue 博士的支持和指导。 39 40 利益冲突 41 本稿件的作者声明他们没有利益冲突。 42 43 资金 44 这项工作得到了 Craig H. Neilsen 基金会、麦克奈特脑研究所和佛罗里达大学脑 45 和脊髓损伤研究信托基金、NIH T32 HL134621 呼吸研究和治疗培训计划、46 HL147554、NIH U01 NS099700 和佛罗里达大学学者计划的支持。 47 48
摘要:全球电力需求的不断增长以及即将到来的电动汽车充电选项整合,给电网带来了挑战,例如线路过载。随着锂离子电池成本的不断下降,存储系统成为传统电网增强的一种替代方案。本文提出了一种电池储能系统的运行策略,针对工业消费者,旨在改善配电网并节省工业消费者的电费。目标是通过调整单个工业消费者站点的电池储能系统控制来降低现有配电网公共耦合点的峰值功率。作为这项工作的一部分,我们调整了一个开源模拟工具,该工具可以真实模拟不同运行模式下的存储系统对配电网的影响。关于存储系统额外压力的更多信息来自基于六个关键特征的详细分析。结果表明,采用组合方法可以降低局部峰值负载和全局峰值负载,同时不会显著增加储能压力。公共耦合点的峰值负载减少了 5.6 kVA 至 56.7 kVA,并且对于存储系统的额外压力,在六个月的模拟中平均仅高出 1.2 个完整等效周期。
•2018年11月 - 重点切换到Atrisco Heritage - NM州加入合作伙伴。
适用对象:任何有兴趣与同事讨论更公平的产品研发成果相关主题的人,这些主题涉及有害偏见,尤其是与种族有关的偏见。这些话题可能很难谈论。研究人员开发的这组讨论提示可以成为产品包容性和负责任的人工智能创新等主题资源工具包的有用部分。它可以为刚开始进行这些对话的人服务,也可以为那些更有经验的人提供复习。如果您正在领导一个人工智能研究项目、开发一个产品或担任产品经理,这个工具对于促进与同事的对话特别有用。这个工具对那些参与用户体验的人也很有帮助。如果您阅读了本文档,并且仍然想了解更多关于使用促进公平和包容性的语言的重要性以及它对组织的重要性,请查看《人工智能和机器学习的负责任语言指南》。