图3:从上到下的行描绘了 * ocho, * hcooh, * oh和 * h 2 o间介导,而从左到右的列则描绘了cumn,cufe,cufe,cuco和cuni dacs。颜色代码:H-白色,C-灰色,o-红色,棕色-Cu。
对人类最突出的威胁之一是全球变暖。当前的全球二氧化碳(CO 2)从化石燃料使用中的散发物保持过多,并且光合作用CO 2同化的自然能力继续被淘汰。1 - 5因此,CO 2利用的前景不仅有助于实现更可耐受的大气CO 2水平,而且还将提供足够大的碳源,以替代化石碳源。在此寻求访问CO 2作为碳源的追求中,至关重要的是,我们从自然中获得灵感。在过去的十年中,合成生物学的ELD进行了积极的发展,其尖端技术旨在将生物催化的CO 2排放量转化为高增值化学产品,例如甲酸(HCOOH)。6,7甲酸可以进一步转化为高价值化学物质。8,9
二氧化碳的光催化还原可以在多种材料上进行,包括无机半导体、碳基半导体、金属配合物、超分子及其衍生物 [3]。光催化过程中的关键步骤是 CO2 分子的初始吸附和活化。吸附在氧空位处进行,在此过程中 CO2 从 Ti3+ 获得电子,形成带负电的物质 [4]。该过程伴随着 CO2 的线性结构转变为高度反应性的弯曲形式 [5]。值得一提的是,CO 2 − 物种的形成可以在没有光催化剂表面照射的情况下发生,但这会显著增加它们的浓度 [ 4 ]。另一个重要步骤是当光照射到光催化剂上时形成电子-空穴对。形成的电子被转移到 TiO 2 表面,在那里被吸附的 CO 2 捕获,从而增强了带负电荷物种的形成。同时,产生的空穴与水分子接触,产生氢离子 (H + ) 和羟基自由基 ( · OH)。CO 2 − 自由基可以进一步转化为 CO
