您的答案需要提供任何先前的学位及其所拥有的研究经验的详细信息。对于具有荣誉学士学位的申请人或通过研究硕士学位的申请人,通常是所有需要的。对于其他学位,您必须提供研究经验和最新研究成果的证据,以确立与这些资格的等价性。有关更多详细信息,请参见网站。
含有由 CRISPR/Cas9 系统产生的双链断裂 (DSB) 的 DNA 可以通过非同源末端连接 (NHEJ) 或同源定向修复 (HDR) 途径进行修复 (1,2,3)。NHEJ 修复途径在切割位点引入非特异性插入或缺失,而 HDR 途径允许在 DSB 位点进行精确的基因编辑 (1,2,3)。靶向特异性 HDR 质粒为 DSB 提供 DNA 修复模板,当与 CRISPR/Cas9 KO 质粒共转染时,能够在发生 Cas9 诱导的 DNA 切割的位置插入特定的选择标记 (1,2)。HDR 质粒可以整合红色荧光蛋白 (RFP) 基因以直观地确认转染,并整合抗生素抗性基因 (嘌呤霉素) 以选择含有成功 CRISPR/Cas9 双链断裂的细胞。嘌呤霉素抗性和 RFP 编码基因两侧是两个 LoxP 位点,这些位点可被 Cre 载体识别,之后可利用该位点从基因组 DNA 中去除这些选择标记 (4,5)。
o 第 4 类 – 上游运输和配送。HDR 的业务活动不产生任何重大排放。 o 第 5 类 – 运营过程中产生的废弃物 – HDR 过去没有计算过这些排放量。HDR 将从 2023 年开始估算高水平相关排放量。HDR 将从 2024 年开始根据办公室特定数据计算相关排放量。 o 第 9 类 – 下游运输和配送。此类别与 HDR 的业务活动无关。
含有由 CRISPR/Cas9 系统产生的双链断裂 (DSB) 的 DNA 可以通过非同源末端连接 (NHEJ) 或同源定向修复 (HDR) 途径进行修复 (1,2,3)。NHEJ 修复途径在切割位点引入非特异性插入或缺失,而 HDR 途径允许在 DSB 位点进行精确的基因编辑 (1,2,3)。靶向特异性 HDR 质粒为 DSB 提供 DNA 修复模板,当与 CRISPR/Cas9 KO 质粒共转染时,能够在发生 Cas9 诱导的 DNA 切割的位置插入特定的选择标记 (1,2)。HDR 质粒可以整合红色荧光蛋白 (RFP) 基因以直观地确认转染,并整合抗生素抗性基因 (嘌呤霉素) 以选择含有成功 CRISPR/Cas9 双链断裂的细胞。嘌呤霉素抗性和 RFP 编码基因两侧是两个 LoxP 位点,这些位点可被 Cre 载体识别,之后可利用该位点从基因组 DNA 中去除这些选择标记 (4,5)。
简介现在,许多采用不同技术制造的高动态范围 (HDR) 和宽色域 (WCG) 显示器都已在市场上销售。 HDR10、杜比视界和混合对数伽马 (HLG) [1-2] 等新高清视频标准均将 ITU-R BT.2020 作为默认色域。 此外,HDR 不仅需要广泛的色域,还需要比标准动态范围 (SDR) 高得多的亮度动态范围。 例如,HDR10 [2] 的最大白色亮度为 1000cd/m2,而杜比视界 [3] 的最大白色亮度高达 10000cd/m2。 色域始终是一种与亮度范围无关的限制性属性。 相反,色彩体积同时涉及色域和亮度范围,并且似乎是比较应该具有大色域和扩展亮度范围的显示器的更好的描述符。 我们已经提出使用色彩体积来分析显示器的视角色彩测量 [4-6]。在这些研究中,使用了标准 L*a*b* CIE 1976 和 L*u*v* 色彩空间,并计算了不同显示器的色彩体积的几个参数。国际显示器计量委员会也对该方法进行了标准化 [7]。在本文中,我们使用杜比实验室最近提出的 ICtCp 色彩空间,该空间非常适合 HDR 和 WCG 内容 [8]。我们将这个新色彩空间与标准 L*a*b* CIE 1976 色彩空间 [9] 进行了比较,分析了在两个 HDR 显示器上测得的色彩视角属性:一台 QLED 电视和一台 OLED 电视。使用最大角度孔径为 ±80° 的 EZContrast 傅里叶光学视角系统在白色、黑色、红色、绿色、蓝色、洋红色、黄色和青色状态下进行色彩测量。
Firad 好。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 Marxaladda Kala Gurka ee 索马里。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 Horumarinta Aadanaha 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2001 年 11 月 21 日由 Warbixinta Horumarinta Aadanaha 创立。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2001 年 11 月 22 日,Warbixinta Horumarinta Aadanaha 基金会成立。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。24 小时前 请记住:我丈夫和儿子有什么关系?。。。。。。。。。。。。。。。。。。。。24岁生日快乐。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.24 Sansaanka Nabadgalyada Aadanaha 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.25 Adeegyada Bulshada 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。25 Sansaanka Dhaqaalaha 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 Sansaanka Deegaanowga 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 Sansanka Calmada Calamiga 和 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 Caalamiyeynta iyo Deegaamaynta 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.28 Lahaanshaha Gaarka ah iyo Saameynteeda Horumarinta Aadanaha 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 Xuquuqda Aadanaha iyo Isxukunka 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.30 Tilmaamayasha Horumarinta Aadanaha 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32
摘要 CRISPR-Cas9 广泛用于小鼠和大鼠的基因靶向。非同源末端连接 (NHEJ) 修复途径在受精卵中占主导地位,可有效诱导插入或缺失 (indel) 突变,从而在靶位点敲除基因,而通过同源定向修复 (HDR) 的基因敲入 (KI) 则难以产生。在本研究中,我们使用双链 DNA (dsDNA) 供体模板与 Cas9 和两个单向导 RNA,一个用于切割目标基因组序列,另一个用于切割 dsDNA 质粒的侧翼基因组区域和一个同源臂,在 G0 幼崽中产生 20-33% 的 KI 效率。 G0 KI 小鼠在一个靶位点携带 NHEJ 依赖的插入/缺失突变,该突变设计在内含子区域,而在另一个外显子位点携带 HDR 依赖的各种供体盒(例如 EGFP 、mCherry 、Cre 和感兴趣的基因)的精确 KI,这些供体盒的长度从 1 到 5 kbp 不等。这些发现表明,这种由 CRISPR-Cas9 系统介导的 NHEJ 和 HDR 组合方法有助于在小鼠和大鼠中高效、精确地 KI 质粒 DNA 盒。
图 1.与其他修饰相比,具有 Alt-R HDR 修饰的供体寡核苷酸表现出更高的 HDR 效率。 图 1.与其他修饰相比,具有 Alt-R HDR 修饰的供体寡核苷酸表现出更高的 HDR 效率。 (A)供体寡核苷酸修改的示意图。 (B)每次修改的 HDR 效率。使用 4D-Nucleofector™ 系统(Lonza)将四个靶向基因位点的 RNP 复合物(2 µM)与 0.5 µM 单链 HDR 供体寡核苷酸通过电穿孔共转染到 Jurkat 和 HeLa 细胞中。使用的 RNP 复合物是 Alt-R Sp HiFi Cas9 Nuclease V3,以及 Alt-R CRISPR-Cas9 crRNA 和 tracrRNA。 使用了三种类型的供体寡核苷酸:未经任何修饰的寡核苷酸(未修饰的)、具有硫代磷酸酯键的寡核苷酸(PS 修饰的)和具有 Alt-R HDR 修饰的寡核苷酸(Alt-R HDR 修饰的)。 电穿孔后 48 小时 (HeLa) 或 72 小时 (Jurkat) 提取基因组 DNA。通过在 Illumina™ MiSeq™ 系统 (v2 化学、150 bp 双端读取) 上进行扩增子测序来测量 HDR 效率。
HOT nAILES 旨在支持多个传统数字模块化无线电 (DMR) 模拟信道以及下一代 DMR 数字接口,提供更高性能、更小尺寸、重量和功率 (SWaP) 外形尺寸以及可扩展的频率覆盖范围,从 1.5 MHz 到 3 GHz。它还能够在不同的动态功率水平以及由于长期可靠性/可支持性/可维护性、老化和温度而变化的情况下保持高性能,同时支持跳频。HOT nAILES 提供的低热足迹和热密度将因较低的结温而显着提高可靠性。HOT nAILES 的线路可更换、基于单元的架构可实现可扩展性、可复制性和低维护成本 未来