CRISPR-CAS技术提供了彻底改变研究的可编程基因编辑工具。领先的CRISPR-CAS9和CAS12A酶非常适合编程的基因操作,但是,它们受到基因组规模干预措施的限制。在这里,我们利用了一个基于CAS3的系统,该系统具有用于基因组工程的过程核酸酶。使用单个CRRNA编程的最小Cascade-CAS3系统(I型I-C)进行了优化,以产生效率接近100%的缺失,并用于迅速产生含量为7-424 kb的大删除,铜绿铜。相比之下,CAS9产生了小的缺失和点突变。CAS3生成的缺失边界是高度可变的,但通过同源指导修复(HDR)模板成功指定。HDR效率要高得多。最小I-C系统
colorfront IBC 2024…从斯德哥尔摩‽…再加上阿姆斯特丹IBC 2024的其他开创性的工作流新闻,阿姆斯特丹 - colorfront(colorfront.com) - 高级性能迪尔(Colorfront.com)的高级授予高性能Dailies/transcoding/thracking Systems的多名授予的开发商强大的流和掌握解决方案。这些演示文稿将通过“现场流”的“现场流” SDR/HDR素材来强调Colorfront的系统的特殊功能,质量和安全性,由Colorfront Transkoder in-in-th-cloud处理,数量嘎嘎作响,将在瑞典(Stockholm,sweden of Sweden)进行实时的宽敞宽带,在实时的范围内进行大约900英里的范围。在IBC 2024期间,该公司还将在其完整的产品组合和基于云的运营中推出新的进步,其中许多由AI提供动力,这将使电影院和电视上的最终体验变得更好。Colorfront Mastering & QC Mastering operations are further enhanced in Transkoder: Colorfront continues to make giant strides in the advancement of cinema/TV mastering and QC mastering with Transkoder, and has opened a new chapter in SDR/HDR color workflows with a multitude of color remapping tools for SDR to Dolby Vision, DCI to Dolby Vision and HDR Cinema, amongst others.以及用于调整HDR滚动和纠正HLG内容的工具,Transkoder的自动字幕检测工具通过使用户能够独立于背景图像检测和调整字幕的亮度来支持增强的生产力,以获得最佳的HDR主人。DCP验证报告现在也以PDF的形式格式化。全新,AI辅助,滚动信用检测功能还提供了提高的效率,其能力可以提取滚动信用的文本内容,从而使用户可以换下更新信用额度的耗时任务。Transkoder还提供了其他自动化工具来检测,过滤和分类,例如不正确/移动架子,黑色边缘像素,死像素,火花/数字灰尘,以及黑色和重复的框架。可操作性改进包含显着增强的时间轴标记功能,以加速QC工作流程,可容纳许多类型的QC标签和对象标签,而新的PSNR和DeltaiCTCP视频比较工具生成时间轴标记,以指示版本之间可见的差异或重新编码的交付物之间的可见差异。QC任务的其他时间轴功能包括视频文件比较,提供参考视频输出的拆分视图,以及将拖放媒体直接拖放到时间轴上的能力。品牌 - 新的综合媒体报告PDF包括手动播放的并自动检测到的问题,每个问题都有屏幕截图设施。
摘要:为了将转化的细胞与非转化细胞分离,抗生素可选标记基因通常用于遗传转化。获得转基因植物后,通常有必要从植物基因组中去除标记基因,以避免调节问题。但是,许多无标记的系统耗时且劳动力密集。同源性修复(HDR)是使用同源臂进行同源重组的过程,以实现DNA双链断裂(DSB)的精确修复。定期间隔间隔的短质体重复序列(CRISPR)/CRISPR相关蛋白9(CAS9)系统是一种强大的基因组编辑工具,可以有效地引起DSBS。在这里,我们分离了一个在茎,射击尖端和渗透性中高度表达的基因的水稻启动子(P SSI),并通过使用此P SSI驱动CRISPR/CAS9介导的HDR用于MarkerFree(PSSICHMF),从而确立了高耐高率序列 - 切除策略。在我们的研究中,在73.3%的T 0植物和T 1植物的83.2%中检测到PSSICHMF诱导的标记基因缺失。在T 1后代获得了高比例(55.6%)的纯合标记植物。重组GUS报告者ADAD分析及其对重组产物的测序显示由PSSICHMF方法介导的精确缺失和修复。总而言之,我们的CRISPR/CAS9介导的HDR自动拆卸方法提供了一种节省时间和有效的策略,用于从转基因植物中去除标记基因。
对一些模型植物 - 病原系统的研究已从多年的工具和资源开发中受益。对于绝大多数经济和营养重要的植物而言,情况并非如此,从而产生了农作物改善的瓶颈。木薯细菌疫病(CBB),由xanthomonas axonopodis PV引起。manihotis(XAM)是木薯(Manihot esculenta crantz)种植的所有地区的重要疾病。在这里,我们描述了木薯的开发,可用于可视化体内CBB感染的初始步骤之一。使用CRISPR介导的同源指导修复(HDR),我们在CBB易感性的3'端(S)基因Mesweet10a生成了含有GFP的植物。随后在转录和翻译水平上可视化了转录激活剂(TAL)效应tal20的Mesweet10a-GFP。据我们所知,这是通过木薯中的基因编辑进行HDR的第一个证明。
多年的工具和资源开发使一些模型植物-病原体系统的研究受益。但对于绝大多数具有经济和营养价值的植物来说,情况并非如此,从而造成了作物改良的瓶颈。由 Xanthomonas axonopodis pv. manihotis (Xam) 引起的木薯细菌性枯萎病 (CBB) 是所有种植木薯 (Manihot esculenta Crantz) 的地区的重要疾病。本文,我们描述了可用于可视化体内 CBB 感染的初始步骤之一的木薯的开发。利用 CRISPR 介导的同源定向修复 (HDR),我们生成了在 CBB 易感性 (S) 基因 MeSWEET10a 的 3' 端无疤痕插入 GFP 的植物。随后在转录和翻译水平上可视化了转录激活因子样 (TAL) 效应物 TAL20 对 MeSWEET10a-GFP 的激活。据我们所知,这是首次在木薯中通过基因编辑展示 HDR。
Best™Sonalis®超声成像系统提供了HDR,LDR,RF或冷冻手术程序的卓越可视化。我们获得专利的Simulview™技术在这两架飞机中都提供了前列腺的同时“实时”视图,从而提高了治疗精度和精度。
超越 2030 年提供者类别标准 引用量逐年增长 HDR 按时完成量逐年增长 加强国际合作 建立奖励高绩效并支持研究人员发展和招生的研究卓越框架
将靶向修饰引入植物基因组的过程涉及三个常见步骤:识别目标DNA序列,诱导断裂和修复。首先,工程核酸酶的序列识别模块重新识别目标DNA序列。接下来,核酸酶与靶DNA序列结合,并创建双链断裂(DSB)或单链断裂。最后,通过内源性DNA修复途径或通过工程机制来修复DNA断裂。主要的DNA修复路径包括非同源末端连接(NHEJ)和同源指导修复(HDR)(Symington and Gautier 2011)。这些途径之间的一个显着差异是,尽管NHEJ是一个容易出错的修复过程,并且通常导致突变引入突变,例如小插入和缺失(Indels),但HDR会导致精确的维修。这些基本原则是当前正在使用的所有基因组编辑技术的基础,工具之间的关键差异
干热岩储量丰富、分布广泛、绿色低碳,具有广阔的开发潜力与前景。本文提出了一种考虑干热岩热电联产的区域综合能源系统分布式鲁棒优化(DRO)调度模型。首先,在区域综合能源系统引入干热岩增强型地热系统(HDR-EGS),HDR-EGS通过与区域电网和区域热网协调运行,实现热电联产的热电解耦,增强系统风电接入空间。其次,在分时电价背景下,利用价格需求响应指导转移高峰负荷。最后,以区域综合能源系统调度周期内总成本最小化为优化目标,构建了考虑干热岩热电联产的区域综合能源系统DRO调度模型。通过模拟真实的小型区域综合能源系统,结果表明,HDR-EGS可以有效促进风电消纳,降低系统运行成本。
• 每个 VAST 数据文件服务器都是双宿主的,通过一个 (1) 100Gb HDR InfiniBand 端口(使用来自 200Gb 交换机端口的双向分离器)连接,以服务来自 DGX A100 系统的存储请求,并通过两个 (2) 100GbE 端口连接到后端存储(以太网)结构。