摘要 在 EU-SST 研发活动框架内,法国国家太空研究中心和阿丽亚娜集团设计并开发了新的光学监视策略,以便以协调或非协调的方式对低地球轨道、中地球轨道和高地球轨道上的空间物体进行分类。这些活动的第一部分是分析公开文献中的最新技术,并根据从这些论文中找到的元素构建我们自己的解决方案。然后,针对每个轨道区域制定了监视策略,重点是低地球轨道和中地球轨道。两者都有一种协调模式:这意味着这些策略会考虑到站点位置和每个站点可以勘察的天空区域来优化要勘察的天空区域;还为每种策略开发了一种非协调模式,以便评估对性能的影响。针对每种轨道区域已经开发了几种监视模式,本文将对这些模式进行介绍。本文将基于法国国家太空研究中心 BA3E 模拟器和阿丽亚娜集团工具,描述这些策略在由 EU-SST 传感器形成的理论光学网络上的模拟性能。最后,在为期两周的活动期间,使用 GEOTracker® 传感器进行了一项操作实验,以挑战和评估这些策略在操作条件下的性能。
(CBOD)夹具带打开装置(CDS)立方体设计规范(CSLI)立方体发射计划(CSOS)客户空间对象(DPAF)双有效载荷附加配件(EAGLE)ESPA ESPA ESPA ESPA ESPA ESPA ESPA ESPA ESPA ESPASESTAILARE实验室实验(EELV)EELV EELV EALVEABLABLE SPACE ERPORABL ABOREVER EVEREDEND PRECTEND WAMERATION(ENANORCSD)CUBSASD CUBSACTA CUBSACTA CUDAATA(ESATESD)(ESATASD) EELV二级有效载荷适配器(GEO)地静止赤道轨道(HEO)高度椭圆形轨道(ISS)国际空间站(J-SSOD)JEM小型卫星轨道轨道轨道(JAXA)日本航空航天勘探局(JEM)日本实验模块(JEMRMS)日本实验模块的远程模块化(JEMRMS) (M-OMV) Minotaur Orbital Maneuvering Vehicle (MEO) Medium Earth Orbit (MET) Microwave Electrothermal Thrusters (MLB) Motorized Light Bands (MPAF) Multi Payload Attach Fittings (MPEP) Multi-Purpose Experiment Platform (NICL) Nanoracks Interchangeable CubeSat Launcher (NOAA) National Oceanic and Atmospheric Administration (NRCSD) Nanoracks ISS立方体外部部署(OMV)轨道机动车辆(OTV)轨道运输车辆(PCBM)Cygnus Cygnus被动式泊位机制(RUG)乘车用户指南(SL-OMV)小型发射轨道轨道操纵车辆(SSMS)
1. AIT:组装、集成和测试 2. AO:机会公告 3. AoA:公司章程 4. BBIU:重新投入使用 5. BIU:投入使用 6. BSS:广播卫星服务 7. BW:带宽 8. CDR:关键设计审查 9. CIN:公司识别码 10. COLA:防撞分析 11. COMINT:通信情报 12. CPSE:中央公共部门企业 13. DoS:空间部 14. DoT:电信部 15. DPIIT:工业和国内贸易促进部 16. DSM:数字表面模型 17. DST:科学技术部 18. DTM:数字地形模型 19. EIRP:有效/等效全向辐射功率 20. ELINT:电子情报 21. EO:地球观测 22. FDI:外国直接投资 23. FMECA:故障模式、影响和危害性分析 24. FSS:固定卫星服务 25. G/T:噪声温度增益 26. GSD:地面采样距离 27. GSO:地球静止轨道 28. GSTIN:商品及服务税识别号 29. HEO:高椭圆轨道 30. IARU:国际业余无线电联盟 31. IDP:IN-SPACe 数字平台(www.inspace.gov.in) 32. IEC:进出口代码 33. IN-SPACe:印度国家空间促进与授权中心 34. ISP:印度空间政策 35. ISRO : 印度空间研究组织 36. IST : 综合卫星测试
人工智能 (AI) 站在第四次工业革命的前沿,各组织正在战略性地整合人工智能作为解决各种日常管理和工作相关挑战的重要工具(Schwab,2017 年;Syam 和 Sharma,2018 年)。人工智能的使用为员工带来了好处,因为人工智能包含机器执行传统上与人类思维相关的认知功能的能力,例如学习、互动、解决问题、创造力和创新(Wamba-Taguimdje 等人,2020 年;Raisch 和 Krakowski,2021 年;De Jonge 等人,即将出版)。最终,人工智能的使用可帮助员工更好地观察、推理和适应不断变化的工作环境(Hughes 等人,2019 年)。重要的是,人工智能似乎可以补充人类智能,从而提高员工整个任务的质量、准确性和精确度(Wilkens,2020 年),并为工作场所创造力提供巨大潜力(De Jonge 等人,即将出版)。人工智能除了为员工带来好处外,还为组织带来了好处,因为它简化了制造流程、增强了决策能力并提高了企业的运营效率 (Wright and Schultz, 2018; Kim and Heo, 2022)。例如,人工智能驱动的医疗机器人可以监测患者的健康状况 (Broadbent et al., 2016);在零售业,人工智能有助于库存管理,就像亚马逊 (Kaplan and Haenlein, 2019);在酒店业,人工智能聊天机器人管理客户住宿和常规查询 (Chung et al., 2020) 并增强联络中心的客户服务 (Kirkpatrick, 2017)。在产品开发方面,人工智能软件可以引导新产品和创新产品的生成和开发 (De Jonge et al., 即将出版)。因此,对员工和组织来说,接受人工智能都变得至关重要,因为它能给他们带来竞争优势 (Oliveira and Martins, 2011)。
1 S. Datta、S. Dutta、B. Grisafe、J. Smith、S. Srinivasa 和 H. Ye,IEEE Micro 39,8 (2019)。2 T. Bryllert、L.-E. Wernersson、T. Löwgren 和 L. Samuelson,Nanotechnology 17,S227 (2006)。3 D. Akinwande、N. Petrone 和 J. Hone,Nat Commun 5,5678 (2014)。4 R. Chen、H. Kim、PC McIntyre、DW Porter 和 SF Bent,Applied Physics Letters 86 (2005)。5 R. Chen、H. Kim、PC McIntyre 和 SF Bent,Applied Physics Letters 84,4017 (2004)。 6 S. Seo、BC Yeo、SS Han、CM Yoon、JY Yang、J. Yoon、C. Yoo、HJ Kim、YB Lee、SJ Lee、JM Myoung、HB Lee、WH Kim、IK Oh 和 H. Kim,ACS Appl Mater Interfaces 9,41607 (2017)。7 KJ Park、JM Doub、T. Gougousi 和 GN Parsons,Applied Physics Letters 86 (2005)。8 FS Minaye Hashemi、C. Prasittichai 和 SF Bent,ACS Nano 9,8710 (2015)。9 WH Kim、HBR Lee、K. Heo、YK Lee、TM Chung、CG Kim、S. Hong、J. Heo 和 H. Kim,Journal of the Electrochemical Society 158,D1 (2011)。 10 H. Kim,ECS Transactions 16, 219 (2008)。11 R. Wojtecki、J. Ma、I. Cordova、N. Arellano、K. Lionti、T. Magbitang、TG Pattison、X. Zhao、E. Delenia 和 N. Lanzillo,ACS applied materials & interface 13, 9081 (2021)。12 E. Färm、M. Kemell、M. Ritala 和 M. Leskelä,The Journal of Physical Chemistry C 112, 15791 (2008)。13 E. Färm、M. Kemell、E. Santala、M. Ritala 和 M. Leskelä,Journal of The Electrochemical Society 157 (2010)。 14 A. Sinha、DW Hess 和 CL Henderson,《真空科学与技术杂志 B:微电子学和纳米结构》24(2006 年)。15 V. Suresh、MS Huang、MP Srinivasan、C. Guan、HJ Fan 和 S. Krishnamoorthy,《物理化学杂志 C 116,23729》(2012 年)。16 A. Sinha、DW Hess 和 CL Henderson,《真空科学与技术杂志 B:微电子学和纳米结构》25(2007 年)。17 TG Pattison、AE Hess、N. Arellano、N. Lanzillo、S. Nguyen、H. Bui、C. Rettner、H. Truong、A. Friz 和 T. Topuria,《ACS nano 14,4276》(2020 年)。 18 M. Fang 和 JC Ho,ACS Nano 9,8651(2015)。19 AJ Mackus、AA Bol 和 WM Kessels,Nanoscale 6,10941(2014)。20 MJ Biercuk、DJ Monsma、CM Marcus、JS Becker 和 RG Gordon,Applied Physics Letters 83,2405(2003)。21 AT Mohabir、G. Tutuncuoglu、T. Weiss、EM Vogel 和 MA Filler,ACS nano(2019)。22 E. Bassous 和 A. Lamberti,Microelectronic Engineering 9,167(1989)。23 C. Ton-That、A. Shard、D. Teare 和 R. Bradley,Polymer 42,1121(2001)。 24 P. Louette、F. Bodino 和 J.-J. Pireaux,表面科学光谱 12,69 (2005)。25 A. Richard,法拉第讨论 98,219 (1994)。
(18 SDS) U.S. Space Force 18 th Space Defense Squadron (19 SDS) U.S. Space Force 19 th Space Defense Squadron (CA) Conjunction Assessment (CARA) NASA's Conjunction Assessment Risk Analysis program (CAESAR) Conjunction Analysis and Evaluation Service, Alerts and Recommendations (CCR) Corner Cube Reflectors (CNES) Centre National d'Etudes Spatiales (French Space Agency) (COTS) Commercial-off-the-Shelf (CUBIT)立方体识别标签(D/T/I)检测,跟踪和识别(EGTN)外分析全球望远镜网络(ELROI)极低的资源光学标识符(EUSST)欧盟空间监视和跟踪计划(FCC)联邦通信委员会(GEOSYNCHRONOUS SYSTITE)GEOSYNCHROUS Equicatial(GEOSYNCHRONOUS GROMANES GNSELSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSER)GNSERTARES GNSERASSSSERTARE(GN) (GUI)图形用户界面(HEO)高度椭圆形轨道(HUSIR)HAYSTACK超级卫星卫星成像雷达(IDS)识别(ILRS)国际激光范围范围服务(LEDS)发光diodes(MEO)中等地球(NPR)NASA Procement Enternement(NPR)NASA Procement nation(NANASOSATERICTION)NANOSATERINE(NANANOSATERICE)NANANOSATERICESTINES(NANANOSELITES) (OCAP)轨道连接评估计划(OEM)轨道胚胎消息(O/OS)所有者/操作员(OSAS)轨道安全分析师(PNT)位置,导航和时间(RF)射频(RF)射频(RFID)射频频率识别(SRI)射电频率识别(SRI)Stanford Research Institute(SSA)空间(SSA)空间(SSA)的尺寸(SSA)的量(SSA)量(SSA)的量(SSA)量(SSN) (TLE)两行元素(TRACSS)空间的交通协调系统(USIR)Ultrawideband卫星成像雷达
Alexander Khazatsky ∗, 1, Karl Pertsch ∗, 1, 2, Suraj Nair 1, 3, Ashwin Balakrishna 3, Sudeep Dasari 1, Siddharth Karamcheti 1, Sorous Nasiranya 5, Mohan Kumar Srirama 4, LawprenCe Yunliang Chen 2, Kirsty Ellis 6, Peter David Fagan 7, Joey Hejna 1, Masha Itkina 3, Marion Lepert 1, Jason Ma 14, Patrick TREE Miller 3, Jimmy Wu 8, Suneel Belkhale 1, Shivin Dass 5, Huy Ha 1, Abraham Lee 2, Youngwoon Lee 2, 16, Arhan Jain 9, Marius Memmel 9, Sungjae Park 10, Ilija Radosavovic 2, Kaiyuan Wang 11,Albert Zhan 6,Kevin Black 2,Cheng Chi 1,Kyle Hatch 3,San Lin 11,Jingpei Lu 11,Abdul Rehman 7,Pannag r Sanketi 12,Archide Sharma 1,Cody Simpson 3,Cody Simpson 3,Quan Vuong 12,Quan Vuong 12,Quan Vuong 12,Homer Walke 2,Blake Wulfe 3,Blake Wulfe 3,Te Xiao 12 Z. Charlotte Le 2, Yunshuang Li 14, Kevin Lin 1, Roy Lin 2, Zehan Ma 2, Abhiram Maddukuri 5, Suvir Mirchandani 1, Daniel Morton 1, Tony Nguyen 3, Abby O'Neill 2, Rosario Scalise 9, Derick Seale 3, Victor Son 1, Stephen Tian 1, Andrew Wang 2, Yilin Wu 4, Annie XIIE 1,Jingyun Yang 1,Patrick Yin 9,Yunchu Zhang 9,Osbert Bastani 14,Glen Berseth 6,Jeannette Bohg 1,Ken Goldberg 2,Abhinav Gupta 4,Abhishek Gupta 9,Abhishek Gupta 9,Dinesh Jayaraman 14 Rammamoorthy 7,Dorsa Sadigh 1,Shuran Song 1,15,Jiajun Wu 1,Yuke Zhu 5,Thomas Kollar 3,Sergey Levine 2,Chelsea Finn 1
会议:•Yu Zeng,Bo-Yuan Huang,Hongce Zhang,Aarti Gupta,Sharad Malik,从RTL设计中产生建筑级别的处理器,用于处理器和加速器的RTL设计,第一部分:确定建筑变量的建筑变量,在计算机上设计(ICCAD),ICCAD(ICCAD),ICCAD•MAKEAI MAKIAN MAKIEN LONS,AHMEDERIAI,AHMEDERIAL LONS,AHMEDERIAL LONS,AHMED AHMEDERIAL LONS,AHMED AHMED AHMED AHMED AHMED AHMED AHMED AHMED AHMED AHMED AHMED MARGAIN Yang, Hongce Zhang , Kristopher Brown, Aarti Gupta and Clark Barrett, Pono: A Flexible and Extensible SMT-based Model Checker, in Computer-aided Verification (CAV) , 2021 • Hongce Zhang , Aarti Gupta and Sharad Malik, Syntax-Guided Synthesis for Lemma Generation in Hardware Model Checking, in Verification Model Checking and Abstract解释(VMCAI),2021。•Hongce Zhang,Maxwell Shinn,Aarti Gupta,Arie Gurfikel,Nham Le和Nina Narodytska,通过可及性分析进行认知任务的复发性神经网络的验证,在欧洲人工智能(ECAI)的欧洲大会上,2020年。•Nina Narodytska,Hongce Zhang,Aarti Gupta和Toby Walsh,在国际学习表现会议(ICLR)中寻找卫星友好的二进制神经网络建筑(ICLR),2020年。•Hongce Zhang,Weikun Yang,Grigory Fedyukovich,Aarti Gupta和Sharad Malik,在验证模型检查和抽象解释(VMCAI)中,用于模块化硬件验证的环境不变性(VMCAI),2020年。Bo-Yuan Huang,Hongce Zhang,Aarti Gupta和Sharad Malik,Ilang:SOC的建模和验证平台,使用指令级抽象,用于系统构建和分析的工具和算法(TACAS)(TACAS),2019年。Bo-Yuan Huang,Hongce Zhang,Aarti Gupta和Sharad Malik,Ilang:SOC的建模和验证平台,使用指令级抽象,用于系统构建和分析的工具和算法(TACAS)(TACAS),2019年。•Hongce Zhang,Caroline Trippel,Yatin A. Manerkar,Aarti Gupta,Aarti Gupta,Margaret Martonosi和Sharad Ma-Maik,Ila-MCM:Ila-MCM:将记忆一致性模型与指导级抽象与异构系统 - chiper-chip chip chip verii chiperifienforcation in-in-chiperforcation in-in-chip-chip-chiperforcation in Sumper-nor-clander/in gramcaded in of Computer-aver-aver-aver-aver-aver-aver>•Jangseop Shin,Hongce Zhang,Jinyong Lee,Ingoo Heo,Yu-Yuan Chen,Ruby B. Lee和Yunheung Paek,这是一种基于硬件的技术隐性信息流动跟踪,在国际计算机辅助设计(ICCAD)的国际会议上(ICCAD),2016
开发新的和先进的材料,其特征是多功能但可量身定制的特性以及改善的环境兼容性是科学界面临的最大挑战之一,即满足不断发展的现代现代,更可持续的技术以及未来的突破性。朝这个方向发展,近年来已经出现了基于高渗透方法的材料设计的新概念,成为材料科学领域的热门趋势之一。这种概念的应用导致了广泛的有趣材料的发展,即所谓的高渗透材料(HEMS),具有出色的物理和化学特性,从高渗透合金(HEAS)开始,首次引入了Cantor等人的研究。1和Ye等。2在2004年。下摆由等摩尔或接近等摩尔比的多个主元素(通常为五个或更多元素)组成,它们是由高构型驱动的实体溶液的一个同质单相结构中随机分布的。在下摆中,高渗透氧化物(HEO)是非常有吸引力的纳米材料,可以通过利用大量可能的元素组合来获得惊人的特性,从而使它们有可能适合多种应用,包括能量存储,包括储能,包括K型,大型K介电材料,水分拆卸,水分析,催化,催化,热保护和绝缘。最后,我们目前研究的一些例子报告为3,4。参考文献1 B. Cantor,I.T.H。Chang,P。Knight,A.J.B。 Vincent Mater。 SCI。Chang,P。Knight,A.J.B。Vincent Mater。SCI。SCI。在本次演讲中,将介绍一般概述高渗透材料,尤其关注HEO,这不仅是其合成和表征,而且还涉及其功能性能以及实际应用。eng。A 2004,375-377,213-218。2 J.-W。 Yeh,S.-K。陈 Lin,J.-Y. gan,T.-S。 Chin,T.-T。 Shun,C.-H。 Tsau,S.-Y. Chang Adv。 eng。 mater。 2004,6,299-303。 3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。2 J.-W。 Yeh,S.-K。陈Lin,J.-Y. gan,T.-S。 Chin,T.-T。 Shun,C.-H。 Tsau,S.-Y. Chang Adv。 eng。 mater。 2004,6,299-303。 3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。Lin,J.-Y.gan,T.-S。 Chin,T.-T。Shun,C.-H。 Tsau,S.-Y. Chang Adv。 eng。 mater。 2004,6,299-303。 3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。Shun,C.-H。 Tsau,S.-Y.Chang Adv。 eng。 mater。 2004,6,299-303。 3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。Chang Adv。eng。mater。2004,6,299-303。 3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。2004,6,299-303。3 B.Petrovičovà,W。Xu,M.G。 Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。 SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。3 B.Petrovičovà,W。Xu,M.G。Musolino,F。Pantò,S。Patané,N。Pinna,S。Santangelo,C。TrioloAppl。SCI。 2022,12,5965。 4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。 SCI。 2023,13,721。SCI。2022,12,5965。4 C. Triolo,S。Santangelo,B。Petrovičovà,M。G。Musolino,I。Rincón,A。Atxirika,S。Gil,Y。BelausteguiAppl。SCI。 2023,13,721。SCI。2023,13,721。