本文介绍了我们针对 2021 年人工智能城市挑战赛 (AICITY21) 的 Track2 的解决方案。Track2 是一个使用真实世界数据和合成数据的车辆重新识别 (ReID) 任务。在本次挑战中,我们主要关注四个点,即训练数据、无监督领域自适应 (UDA) 训练、后处理、模型集成。(1)裁剪训练数据和使用合成数据都可以帮助模型学习更多判别性特征。(2)由于测试集中有一个在训练集中未出现的新场景,因此 UDA 方法在挑战中表现良好。(3)后处理技术包括重新排名、图像到轨迹检索、摄像头间融合等,可显著提高最终性能。(4)我们集成了基于 CNN 的模型和基于 Transformer 的模型,它们提供了不同的表示多样性。通过上述技巧,我们的方法最终取得了 0.7445 的 mAP 分数,在比赛中获得第一名。代码可在 https://github.com/michuanhaohao/AICITY2021_Track2_DMT 获得。
最后,Darktrace 还使用各种机器学习技术来自动执行调查工作流程中执行的重复且耗时的任务。通过分析专家网络分析师如何与 AI 的输出进行交互(例如他们如何分类威胁警报以及他们如何使用第三方来源),Darktrace 能够复制这些专家行为并自动执行某些分析师功能。这使得所有成熟度级别的分析师都能进行越来越高效和简化的调查。它还为安全团队提供了他们所需的关键时间,使他们能够专注于更高价值的战略工作,例如管理风险和专注于更广泛的业务改进。
背景:随着 COVID-19 负担的加重,快速可靠的筛查方法势在必行。胸部 X 光片在快速分诊患者方面起着关键作用。不幸的是,在资源匮乏的环境中,训练有素的放射科医生很少。目的:本研究评估并比较人工智能 (AI) 系统与放射科医生在检测 COVID-19 胸部 X 光片发现方面的表现。受试者和方法:测试集包括三个月内 457 张疑似 COVID-19 肺炎患者的 CXR 图像。一位拥有 13 年以上经验的放射科医生和人工智能系统 (NeuraCovid,一款与人工智能模型 COVID-NET 配对的 Web 应用程序) 对 X 光片进行了评估。通过计算灵敏度、特异性和生成受试者工作特征曲线来比较人工智能系统和放射科医生的表现。RT-PCR 测试结果被用作金标准。结果:放射科医生的灵敏度和特异性分别为 44.1% 和 92.5%,而 AI 的灵敏度和特异性分别为 41.6% 和 60%。AI 系统将 CXR 图像正确分类为 COVID-19 肺炎的曲线下面积为 0.48,放射科医生为 0.68。放射科医生的预测优于 AI,P 值为 0.005。结论:放射科医生检测 COVID-19 肺部病变的特异性和灵敏度优于 AI 系统。
● 算法决策缺乏透明度 ● 不法分子利用人工智能做坏事 ● 人工智能系统容易被篡改和出现数据安全问题 ● 系统容易受到偏见 ● 法律跟不上技术的发展 ● 我如何真正信任这些系统?
司法管辖章节 澳大利亚 Jordan Cox, Aya Lewih & Irene Halforty, Webb 62 奥地利 Günther Leissler & Thomas Kulnigg, Schönherr Rechtsanwalte GmbH 75 比利时 Steven de Schrijver, Astrea 80 巴西 Eduardo Ribeiro Augusto, SiqueiraCastro Lawyers 93 保加利亚 Grozdan Dobrev & Lyuben dev, DOBREV & LYUTSKANOV Law Firm 98 加拿大 Simon Hodgett, Ted Liu & André Perey, Osler, Hoskin & Harcourt, LLP 107 中国 Susan Xuanfeng Ning, Han Wu & Jiang Ke, King & Wood Mallesons 123 芬兰 Erkko Korhonen, Samuli Simojoki & Kaisa Susi, Borenius Attorneys Ltd 134 法国 Weber & Jean-Christophe Ienné, ITLAW Lawyers 145 德国迈克尔·拉斯和博士Markus Sengpiel Luther Real Estate Company mbH 158 希腊 Victoria Mertikopoulou、Maria Spanou 和 Natalia Soulia Kyriakides Georgopoulos Law Firm 169 印度 Divjyot Singh、Suniti Kaur 和 Kunal Lohani、Alaya Legal Lawyers 183 爱尔兰 Kevin Harnett 和 Claire Morrissey、Maples Group 198 意大利 Massimo Donna 和 Chiara chi、Paradigm – Law & Strategy 211 日本 Akira Matsuda、Ryohei Kudo 和 Haruno Fukatsu、Iwata Godo 221 韩国 Won H. Cho 和 Hye In Lee、D'LIGHT Law Group G Legal – Toncescu 和 SPARL Associates 252 新加坡 Lim Chong Kin、Drew & Napier LLC 264 瑞士András Gurovits,Kraft Frey Ltd. 所有者276
鉴于人工智能开发人员在确保人工智能系统、其成果和此类系统用户的责任方面发挥着重要作用,我们需要他们采取负责任、合乎道德和负责任的方法。因此,我们建议这些参与者参与旨在产生负责任的人工智能设计和使用的政策制定过程。根据我们的实证研究结果,我们提出了几项建议,以弥补当前在追求负责任的人工智能时将道德原则、认证标准和解释方法作为问责机制所发现的缺陷。我们希望这些建议能够有助于讨论如何在实践中确保问责制,同时兼顾开发人员、研究人员和公众的观点。
摘要 我们正处在巨变的边缘,这是一个历史抉择和机遇的关键时刻。未来五年可能是人类历史上最好的五年,也可能是最坏的五年,因为我们拥有创造最基础的通用技术(GPT)的全部力量、技术和知识,而这项技术可能会彻底颠覆整个人类历史。最重要的通用技术是火、轮子、语言、文字、印刷机、蒸汽机、电力、信息和电信技术,而真正的人工智能技术将超越它们。我们的研究涉及为何以及如何在未来五年内设计和开发、部署和分发真正的机器智能或真正的人工智能或真正的超级智能(RSI)。RSI 的整个构思分为三个阶段,历时约三十年。跨人工智能的第一个概念模型于 1989 年发布,涵盖了所有可能的物理现象、影响和过程。 1999 年开发了更扩展的 Real AI 模型。2008 年提出了超级智能的完整理论,包括现实模型、全局知识库、NL 编程语言和主算法。RSI 项目最终于 2020 年完成,一些关键发现和发现已在欧盟人工智能联盟/Futurium 网站上发表,共计 20 多篇文章。RSI 具有统一的世界元模型(全局本体论)、通用智能框架(主算法)、标准数据类型层次结构、NL 编程语言,可通过智能处理数据(从网络数据到现实世界数据)与世界进行有效交互。基本成果包括技术规范、分类、公式、算法、设计和模式,均作为商业机密保存,并记录为《企业机密报告:如何设计人机超级智能 2025》。作为欧盟人工智能联盟的成员,作者提出了人机 RSI 平台作为跨国欧盟-俄罗斯项目的关键部分。为了塑造一个智能和可持续的未来,世界应该投资于 RSI 科学和技术,因为跨人工智能范式是通往包容、仪器化、互联和智能世界的道路。