摘要 分析动态细胞内生物过程的一个挑战是缺乏足够快速且特异性的方法来扰乱细胞内蛋白质活动。我们之前通过在功能域之间插入蓝光控制的蛋白质二聚化模块,开发了微管加末端追踪蛋白 EB1 的光敏变体。在这里,我们描述了一种先进的方法,可以在单个基因组编辑步骤中用这种光敏变体替换内源性 EB1,从而使这种方法可以在人类诱导多能干细胞 (hiPSC) 和 hiPSC 衍生的神经元中使用。我们证明,在发育中的皮质神经元中,急性和局部光遗传学 EB1 失活会诱导生长锥周围微管解聚,随后导致神经突回缩。此外,前进的生长锥会被蓝光照射区域排斥。这些表型与神经元 EB1 同源物 EB3 无关,揭示了 EB1 介导的微管末端相互作用在神经元形态发生和神经突引导中的直接动态作用。
将 DNA 有效载荷靶向人类 (h)iPSC 涉及多个耗时、低效的步骤,每个构建体都必须重复这些步骤。在这里,我们介绍了 STRAIGHT-IN Dual,它能够在一周内以 100% 的效率同时、等位基因特异性、单拷贝整合两个 DNA 有效载荷。值得注意的是,STRAIGHT-IN Dual 利用 STRAIGHT-IN 平台实现几乎无疤痕的货物整合,促进组件回收以进行后续的细胞修饰。使用 STRAIGHT-IN Dual,我们研究了启动子选择和基因语法如何影响转基因沉默,并展示了这些设计特征对 hiPSC 向神经元正向编程的影响。此外,我们设计了一种格拉瑞韦诱导的 synZiFTR 系统来补充广泛使用的四环素诱导系统,提供转录因子和功能报告基因的独立、可调和时间控制的表达。 STRAIGHT-IN Dual 生成同质基因工程 hiPSC 群体的空前效率和速度代表了合成生物学在干细胞应用领域的重大进步,并为精准细胞工程开辟了机会。
心律失常性心肌病(ACM)是一种遗传性心肌病,其特征是通过纤维脂肪浸润和心肌细胞损失替换心肌。ACM易感性心律不齐的高风险。ACM最初被定义为一种脱染色体疾病,因为导致疾病的大多数已知变异涉及编码脱染色体蛋白的基因。研究这种病理是复杂的,特别是因为人类样本很少见,并且在可用时反映了该疾病最先进的阶段。通常的细胞和动物模型无法再现人类病理的所有标志。在过去十年中,已提出人类诱导的多能干细胞(HIPSC)作为创新的人类细胞模型。现在,HIPSC分化为心肌细胞(HIPSC-CM)现在已被良好控制,并且在许多实验室中广泛使用。该HIPSC-CM模型概括了病理学的关键特征,并为疾病的心肌细胞综合方法和筛查抗心律失常药物(AAD)有时在经验上为患者开了。在这方面,该模型为探索和开发新的治疗方法提供了独特的机会。HIPSC-CMS的使用无疑将有助于开发精密医学,以更好地治愈患有ACM的患者。
背景:人类诱导的多能干细胞(HIPSC)的人类睾丸器官的产生为性腺发育生物学和生殖疾病建模提供了令人兴奋的机会。但是,创建类型的类器官,这些器官紧密模仿睾丸的组织结构仍然具有挑战性。方法:在这项研究中,我们建立了一种使用逐步分化方法以及悬挂掉落和旋转培养系统的组合从HIPSC生成睾丸器官(TOS)的方法。通过检测形态,单细胞RNA测序和蛋白质谱证实了HIPSC衍生的前体睾丸细胞自组装成类器官的能力。通过测量转录组特征和功能特征的测量,包括激素的反应性和血液杀伤性(BTB)形成,以及通过记录对生殖毒素生殖的细胞的细胞活力和BTB完整性来评估睾丸类器官作为药物评估模型的可靠性。最后,我们应用了睾丸类器官来评估半瓜肽是胰高血糖素样肽-1受体激动剂(GLP-1 RA)对睾丸功能的影响,从而强调了它们作为药物评估模型的实用性。结果:这些类器官表现出睾丸状结构和BTB功能。RNA测序和功能测定确认睾丸类器官具有促性腺激素调节的基因表达谱和内分泌功能,与睾丸组织的基因表达谱和内分泌功能非常相似。值得注意的是,这些类器官表现出对半卢比德的敏感性。用半卢宾治疗导致睾丸激素水平降低和INHBB表达的下调,与先前的临床观察一致。结论:这些发现引入了一种从人多能干细胞中产生睾丸器官的方法,突出了它们作为研究睾丸功能,药物毒性的有价值模型,以及Semaglutide等化合物对睾丸健康的影响。
在人类诱导的多能干细胞(HIPSC)中,系统地对内源性蛋白进行了带有荧光标记的内源性蛋白,可以观察到不同细胞态中的活细胞动力学。然而,通过CRISPR/CAS9诱导的编辑将氟化蛋白的精确插入到活细胞中依赖于同源指导的修复(HDR)。非同源末端连接(NHEJ)DNA修复途径通常胜过HDR,导致不可逆的内部和缺失(Indels)和低敲门效率。识别成功的HDR介导的标记事件是当目标基因在干细胞中未表达并且成功的标记可能不会立即观察到的靶基因是一个额外的挑战。为了解决这些挑战,我们使用了:1)在优化的感染多重性(MOI)下,与腺相关的病毒血清型6(AAV6)介导的DNA供体以最大的效率提供标签有效载荷; 2)滴定的多重CAS9:GRNA核糖核蛋白(RNP)量确保条件之间的HDR/indel频率平衡; 3)长放大液滴数字PCR(DDPCR),以测量编辑池中HDR产生的等位基因的频率; 4)同时推断CRISPR编辑(ICE)以检测并避免与Indels明显饱和(> 50%)。这些方法使我们能够确定有效,准确的编辑条件并恢复带有标记的单元,包括在干细胞中未表达的位点标记的单元。这些步骤共同使我们能够开发出有效的方法和工作流程,直接从具有最佳HDR和最小化indel频率的理想细胞池的克隆分离。使用这种方法,我们同时实现了荧光标记物和双重插入到四个基因中的基因,这些基因在差异过程中被打开,但最初在HIPSC中未表达,在HIPSC中,基于荧光基于荧光的标记细胞的直接选择是不可能的:TBR2,TBR2,TBXT,CDH2,CDH2,CDH2,CDH2,CDH2,CDH2(PROFEFFEREDIATION和MEGREDIATION和MEGREGRIATION和MEGRGIAL egratiation and Moggratial Genes and Cdhees and Cdhh5)and Cdhh5(cdh5)和CDH5(cdh)5(cdh)5(cdh)5(cdh5)。通过对各种GRNA序列和RNP浓度的系统评估,我们确定了达到高HDR频率的每个基因的条件,以38.6%的峰值达到峰值,同时还避免了与Inderels相关的条件,在这种情况下,很难在带有统一的等位基因中具有标记等位基因的克隆的隔离。过度,该方法提高了在hipscs中未表达的基因的荧光敲击的效率,对细胞过程的基于可靠的基于图像的观察,并可以恢复精确编辑的单声道和双重标记的克隆。我们将这些方法标准化,以产生有效且一般的工作流程,以将大型HDR介导的敲入引入HIPSC中。
替代剪接已成为时空控制发育的基本机制。更好地了解这种机制的调节,不仅具有阐明基本生物学原理的潜力,而且还具有破译与正常剪接网络不正当调节的疾病有关的病理机制。在这里,我们利用了人类多能干细胞在人类肌发生过程中破译肌肉闪烁(MBNL)蛋白的作用,这是一个组织特异性剪接调节剂,其功能丧失与肌动症1型1型(DM1)相关,是一种遗传性神经肌肉肌肉疾病。多亏了CRISPR/CAS9技术,我们产生了在MBNL蛋白中耗尽的人类诱导的多能干细胞(HIPSC),并评估了它们损失对骨骼肌细胞产生的后果。我们的结果表明MBNL蛋白需要晚期肌源性成熟。此外,MBNL1和MBNL2的丧失概括了在HIPSC衍生的骨骼肌细胞中观察到的DM1的主要特征。比较转录组分析还揭示了由这些蛋白质调节的肌肉相关过程,这些过程通常在DM1中被误导。一起,我们的研究揭示了人类肌发生中MBNL蛋白的时间需求,并应促进能够应对这些MBNL蛋白功能丧失的新的治疗策略。
摘要人类卵巢卵泡的体外模型将极大地有益于女性繁殖的研究。卵巢发育需要生殖细胞和几种类型的体细胞的结合。其中,颗粒细胞在卵泡形成和对卵子发生的支持中起关键作用。存在有效的方案来产生人类诱导的多能干细胞(HIPSC)的人类原始生殖细胞样细胞(HPGCLC),但产生颗粒细胞的一种方法是难以捉摸的。在这里,我们报告说,两个转录因子(TFS)的同时过表达可以将hipsc的分化指向颗粒样细胞。我们阐明了几种与颗粒相关的TF的调节作用,并确定NR5A1的过表达和Runx1或Runx2足以生成类似颗粒状的细胞。我们的颗粒状细胞具有类似于人类胎儿卵巢细胞的跨文章组,并概括了包括卵泡形成和类固醇生成在内的关键卵巢表型。与HPGCLC聚集时,我们的细胞形成卵巢样类器官(卵形),并支持从迁移到性腺阶段的HPGCLC发育,这是通过诱导DAZL表达来衡量的。该模型系统将为研究人类卵巢生物学提供独特的机会,并可以开发女性再生健康的疗法。
摘要:人类感光细胞的功能依赖于高度特化的纤毛。纤毛功能的紊乱通常会导致感光细胞死亡和视力丧失。视网膜纤毛病是一种遗传多样性的视网膜遗传病,会影响感光细胞纤毛的各个方面。尽管利用动物疾病模型对视网膜纤毛病的理解取得了进展,但它们往往无法准确模拟观察到的患者表型,这可能是由于结构和功能与人类视网膜存在偏差。人类诱导多能干细胞 (hiPSC) 可用于生成替代疾病模型,即 3D 视网膜类器官,其中包含所有主要的视网膜细胞类型,包括带有纤毛结构的感光细胞。这些视网膜类器官有助于研究人类衍生系统中的疾病机制和潜在疗法。三维视网膜类器官仍是一项发展中的技术,尽管取得了令人瞩目的进展,但仍存在一些局限性。本综述将讨论 hiPSC 衍生的视网膜类器官技术现状,该技术可准确模拟与基因(包括 RPGR 、 CEP290 、 MYO7A 和 USH2A )相关的主要视网膜纤毛病。此外,我们还将讨论针对视网膜纤毛病的新型基因治疗方法的开发,包括大基因的传递和基因编辑技术。
摘要:人类诱导的多能干细胞(HIPSC)和3D微动物培养技术的组合允许生成模型,这些模型概括了心脏微环境,以进行新处理的临床前研究。特别是,球体代表了3D中培养细胞的最简单方法,并产生了细胞访问培养基的梯度,模仿了缺血性事件的效果。然而,以前的模型需要在低氧气条件或剥夺营养培养基下孵育才能重现缺血。在这里,我们描述了自我诱导缺血性核心的大球体的产生(即直径大于500μm)。球体是由源自HIPSC(HIPSC-CM)和原发性人类心脏成纤维细胞(HCF)的心肌细胞共培养产生的。在适当的培养基中,细胞形成播种后2天产生缺血核心的聚集体。球体在10天后还显示出自发的细胞重组,HIPSC-CM位于中心,被HCF包围。这导致了微动物刚度的增加,其特征是实施收缩测定。总的来说,这些现象是纤维化组织重塑继发于心脏缺血事件的提示,因此证明了这些球体对人类心脏缺血建模的适用性及其对新治疗和药物研究的潜在应用。关键字:心肌缺血,心脏球体,纤维化,HIPCS-CM,刚度■简介
- HIPSC培养和分化 - 细胞基因工程。- 通过qRT -PCR,流式细胞术和显微镜对细胞的功能表征。适用的立法和法规:由8月18日的第40/2004号法律批准的科学研究研究员的法规,在12月之前修改和重新发布。 8月27日的第202/2012号法律和第123/2019号法令第123/2019号法律法律,第164/2019号,第I系列2019-08-28,以及对科学技术基金会研究奖学金的规定,I.P.。-in https://dre.pt/dre/detalhe/ congulation/950-2019-127238533和IBET奖学金法规。