基于资源理论和情感信息理论的保存,本研究探讨了教练运动员依恋对运动员参与,其基本机制以及从“损失获得”双路观点的影响。使用教练运动员的依恋量表,繁荣的量表,运动员参与量表和心理韧性量表,使用便利抽样方法对424名运动员(299名男性,125名女性,平均年龄= 16.14±2.24岁)进行了横断面调查。结果表明,教练运动员的依恋及其细分(回避的依恋和焦虑依恋)对繁荣和运动员的互动产生了U形影响,并具有不对称的U形曲线,其中左路更长,右路的较长。蓬勃发展对运动员的互动产生了重大影响,并在教练运动员依恋与运动员参与之间的U形关系中充当了瞬时调解人。心理韧性显着调节了教练运动员依恋对繁荣和运动员互动的U形效应。调查结果鼓励教练考虑运动员的依恋倾向,并根据运动员的依恋类型调整其沟通策略,以提高运动员的繁荣和参与水平。
本研究旨在了解积极学习者对技术使用的茶点学生的态度。通过利用影响技术使用态度的四个重要因素,即感知的有用性(PU),可感知的易用性(PEOU),老年技术自我效能(GTSE)和对使用技术(ATUT)的态度。定量研究用于测试研究模型。对318位参与者进行了调查,通过便利抽样来收集数据,该数据使用AMOS 21.0和SPSS 26.0软件程序进行了分析。结果证实了PU对茶点学生对技术使用的态度的影响,并介导了有用性对他们态度感知的影响。此外,发现GTSE在PU通过PEOU的茶点学生态度的影响中具有适度的中介作用。这项研究的结果对老年技术的设计和实现具有重要意义。从理论上讲,发现与技术接受模型(TAM)保持一致,这表明,如果老年人认为老年人认为这是有用且用户友好的,则更倾向于采用技术。实际上,该研究表明,旨在增强老年人的效用,易用性和可访问性的干预措施可能有效地提高其技术采用。总的来说,这些发现强调了使老年技术更加可观且用户友好的重要性,从而有可能增强老年人的技术采用,从而提高其整体生活质量。
kagera是一个跨界河流盆地,这意味着集水区(布隆迪,卢旺达,坦桑尼亚和乌干达)中的国家必须就LVBC的政策框架建立并达成一致的管理结构。但是,就机构设定Kagera而言,由于KBO已解散,因此Kagera在此期间没有任何机构框架,并且成立Kagera盆地管理部门的提议仍在进行中,尚未正式化。自KBO于2004年解散以来没有管理结构。目前有一个提议组成一个Kagera盆地管理部门(KBMU),该部门属于LVBC,但仍处于早期开发阶段。每个国家都试图管理其部分河流。
目前,全球水周期正在经历激进的转变,相关的全球水危机需要利益相关者的快速行动来减轻对人类和生态系统的不利影响。这种行动的紧迫性是由气候变化和土地使用土地覆盖变化(LULCC)的综合作用以及确保清洁水源的相关挑战所驱动的。气候变化所产生的全球变化正在使水的稀缺性变得更加严重,在水上压力的地方,导致更多的竞争,甚至在水资源上发生冲突。解决全球水危机的问题在全球南部的数据砂区域尤其具有挑战性,在该地区,水文过程的状况和水的可用性受到限制。在这里,通过强大的水文模型在水文预测中的进展仍在研究议程之上。全球南部,尤其是西非的一般是对热带集水区的有限的水文过程,随着土地覆盖的加速变化。该研究的重点旨在解决以下研究问题:•气候变化如何改变热带流域的水文过程,并且这是否改变了嵌套集水区的水流方案?•除了给定的西非地区的气候变化所驱动的变化外,LULCC在嵌套集水区的空间变化中的贡献和贡献是什么?为了解决上述问题,我们将依靠西非PRA河流域的数据。在本研究中,我们采用了Google Earth Engine(GEE)和随机森林分类器(RFC)来评估2007年至2023年期间PRA河流域的时空时空土地使用/覆盖变化和变化检测。专注于五(5)个LULCC分类对于该地区不管制的大型和小规模的采矿活动至关重要。使用归一化差异指数(NDWI)和改良的NDWI(MNDWI)有效地提取水表面区域,以进行PRA河流盆地的变化和压力,并处理
为了阐明CO 2(ECO 2),C捕获和营养可用性之间的反馈,伯明翰森林研究所(BIFOR)在英国一个成熟的温带森林中建立了一个自由空气co 2富集(面部)设施,在其中将三个面孔阵列(30 m DIA)暴露于高高的CO 2(+150 PPM)在+150 ppm上方的杂物(+150 ppm)生长时,ambient ambient ambient Ambient ambient Ampiest ambient Ampiest ambient ampient ambient ampiest ampient。1面部富集始于2017年,一直持续到迄今为止。响应于CO 2的富集,光合作用CO 2在头三年中平均增加了23%,而这种增强的吸收是由CO 2富集的第七年所维持的。2增强的CO 2摄取导致树木干物质(+10.5%)的总体显着增加,树木基础面积增量增加了28%。通过垃圾降落(+9.5%),根渗出液(+40%)以及有机和矿物质土层中的细根生物量和特异性根长的地下C分配。与确认和量化CO 2受精效应程度的环境阵列相比,在ECO 2下计算出的2021年和2022年的总净初级生产率更高约2吨。
通过CRISPR – CAS系统进行的自然原核防御需要在称为适应的过程中将间隔者整合到CRISPR are中。为了搜索具有增强能力的适应蛋白,我们建立了一个永久性的DNA PAC Kaging和Transing(P EDP AT)系统,该系统使用T7 pha ge的菌株将pha ge to packa ge质粒构成,然后将其转移并杀死宿主,然后使用T7噬菌体的不同应变来重复该周期。我们使用PED-PAT来识别更好的适应蛋白 - – Cas1和cas2 - 通过富集具有更高适应性效率的突变体。我们识别出在体内增强的10倍增强的cas1蛋白。在体外,一个突变体具有较高的积分和DNA结合活性,与野生型CAS1相比,另一个突变体具有较高的分解活性。最后,我们结婚说,他们选择的特定座位可降低原始图案。在技术上使用的P EDP或型号屏幕,需要有效,轻松的DNA转导。
摘要 - 在当前的分子通信(MC)系统中,在纳米级进行计算操作仍然具有挑战性,限制了它们在复杂场景中的适用性,例如自适应生化控制和先进的纳米级传感。为了克服这一挑战,本文提出了一个新颖的框架,该框架将计算无缝整合到分子通信过程中。该系统可以通过将数值分别编码为每个发射机发出的两种类型的分子来分别表示正值和负值,从而启用算术操作,即添加,减,乘法和除法。特别是,通过传输非反应性分子来实现添加,而减法采用在传播过程中相互作用的反应性分子。接收器解调分子计数以直接计算所需的结果。对位错误率(BER)的上限的理论分析和计算模拟确保了系统在执行复杂算术任务时的鲁棒性。与传统的MC方法相比,所提出的方法不仅在纳米级的基本计算操作中,而且为智能,自主分子网络奠定了基础。
宗教团体出于各种原因采取行动,但主要原因是他们的信仰。每个信仰传统都在谈论成为地球的忠实管家和照顾所有居民的重要性。可悲的是,即使清洁空气,清洁水或干净的土地没有政治性,环境已经成为一个政治问题。将您的房屋失去洪水,飓风或野火没有任何政治性。IREJN支持HB 6280,因为它将创建超级基金,该超级基金将帮助康涅狄格州解决气候变化和补救,适应和缓解策略。
使用工作需求 - 资源模型,本研究调查了工作场所的依恋风格,作为工作参与的预测指标和工作场所欺凌的良好脱离效果的主持人。作为个人资源,我们假设安全的工作场所依恋将促进工作参与度,而两种类型的不安全的工作场所附件(即,避免和居住)都会相反。以前的工作还使我们期望工作场所欺凌和参与之间的关系会更强,而当目标期望它充当工作资源(即安全工作场所依恋),而当他们的工作模型与工作场所侵略一致时,则更弱。使用该过程宏,我们在完成在线调查的法国办公室员工(n = 472)的便利样本中测试了这些假设。安全的工作场所依恋与较高的工作参与度有关,同时工作场所的依恋不安全和欺凌观念与工作参与负面影响。支持我们的假设,对工作场所欺凌的感觉与具有安全的工作场所依恋风格的员工的脱离关系最重要,而在其他工作场所则较少。我们的结果远没有推荐不安全的债券作为保护,而是强调了防止所有形式的工作场所侵略的必要性,从而使员工能够依靠自己的工作环境作为工作资源。
(www.pichia.com),在这种酵母中成功表达了5000多种不同的蛋白质(Schwarzhans等,2017)。在P. p. p. p. p. p. p. p. p. p. opterer工程中的典型策略包括启动子工程(Nong等,2020; Lai等,2024; Zhou等,2023),信号肽修改(Lie等,2015),拷贝数的增加(Liu等,2020年; putteas et ease; wang al。 2019年),以及伴侣因子的引入(Zheng等,2019;Raschmanová等,2021)。 但是,基因组中的直接基因敲除可以导致P. P. P. P. P. p. p. pastoris代谢途径内的特定功能的丧失,从而破坏其整体代谢网络。 相比之下,利用合成生物学工具调节基因表达可能比传统的敲除或过表达方法更有效。 基因表达调节是许多细胞过程的基础(De Nadal等,2011; Nielsen和Keasling,2016年)。 当前,微生物中基因调节的主要工具是定期间隔短的短质体重复序列(CRISPR)系统的。 但是,使用CRISPR进行基因激活或抑制通常需要在CRISPR系统中蛋白质失活,添加激活或抑制域,以及仔细选择合适的SGRNA靶位点。 因此,CRISPR系统相对复杂且耗时。 此外,CRISPR的应用还受到宿主细胞接受度,异物蛋白质表达效率和目标位点选择准确性等因素的影响,这使得优化过程更加繁琐。在P. p. p. p. p. p. p. p. p. p. opterer工程中的典型策略包括启动子工程(Nong等,2020; Lai等,2024; Zhou等,2023),信号肽修改(Lie等,2015),拷贝数的增加(Liu等,2020年; putteas et ease; wang al。 2019年),以及伴侣因子的引入(Zheng等,2019;Raschmanová等,2021)。但是,基因组中的直接基因敲除可以导致P. P. P. P. P. p. p. pastoris代谢途径内的特定功能的丧失,从而破坏其整体代谢网络。相比之下,利用合成生物学工具调节基因表达可能比传统的敲除或过表达方法更有效。基因表达调节是许多细胞过程的基础(De Nadal等,2011; Nielsen和Keasling,2016年)。当前,微生物中基因调节的主要工具是定期间隔短的短质体重复序列(CRISPR)系统的。但是,使用CRISPR进行基因激活或抑制通常需要在CRISPR系统中蛋白质失活,添加激活或抑制域,以及仔细选择合适的SGRNA靶位点。因此,CRISPR系统相对复杂且耗时。此外,CRISPR的应用还受到宿主细胞接受度,异物蛋白质表达效率和目标位点选择准确性等因素的影响,这使得优化过程更加繁琐。在基因激活中,需要引入其他转录激活剂,而在基因抑制中,抑制因子必须进行精确设计和交付,以确保特定的调节。因此,尽管具有强大的基因调控能力,但CRISPR系统的操作复杂性和时间成本很高(Casas-Mollano等,2020; Chen等,2020)。相比,RNA干扰(RNAi)直接靶向RNA,影响蛋白质翻译,并为基因调节提供了更简单的方法。RNAi是一种由双链RNA(DSRNA)激活的基因沉默途径(Drinnenberg等,2009),由核糖核酸酶III(RNAseIII)酶处理,该酶加工成小型小型干扰RNA(sirnas)。dicer是一种酶,可将双链RNA裂解成小siRNA片段。这些siRNA随后引导参与RNA裂解的Argonaute蛋白靶向和裂解转录本,有效地沉降基因表达(Wang等,2019)。RNAi系统及其基本组件(dicer,argonaute和sirnas)通过简单的质粒转化步骤提供了一种更直接和灵活的方法来沉默基因。这减少了时间和精力,从而促进了各种菌株基因抑制策略的快速发展(Crook等,2014)。本报告详细介绍了P. P. P. P. P. rnai系统的第一个建立。可以创建这样的系统的假设是基于观察结果,即引入Argonaute蛋白和siRNA到P. p. p. p. p. p. p. p. p. p. p. p. p. p. p. p. p. apastoris。基因修饰的P. p. p. p. p. p. press这表明在P. Pastoris基因组中编码丁香样蛋白的基因的潜在存在。这项研究成功地证明了通过引入Hairpin RNA通过RNAi系统抑制单基因(增强的绿色荧光蛋白(EGFP))和双基因(EGFP /组氨酸(His))。