摩根·科尔贝克(Morgan Colbeck)出生于贝德福德郡(Bedfordshire),并迅速对科学技术产生了浓厚的兴趣。上贝德福德学校后,他搬到了达勒姆大学,由于对橄榄球的热爱,选择了科林伍德学院。他于2018年毕业于自然科学,专门从事数学和物理学。 尽管选择黑洞热力学作为他的论文的主题,但他还是接触了量子计算和量子光学器件,随着他对网络安全的理解,这很快成为了关键的兴趣。 毕业后,他短暂地担任BAE系统应用情报(现已数字情报)的计算机程序员,然后于2019年9月加入皇家海军,担任军官学员,培训成为武器工程师。 在HMS Wales和HMS Defender上进行了短暂的作业,并在HMS Collingwood进行了进一步的培训,他于2022年5月加入HMS Duncan担任武器部门官员(WSO)。。他于2018年毕业于自然科学,专门从事数学和物理学。尽管选择黑洞热力学作为他的论文的主题,但他还是接触了量子计算和量子光学器件,随着他对网络安全的理解,这很快成为了关键的兴趣。毕业后,他短暂地担任BAE系统应用情报(现已数字情报)的计算机程序员,然后于2019年9月加入皇家海军,担任军官学员,培训成为武器工程师。在HMS Wales和HMS Defender上进行了短暂的作业,并在HMS Collingwood进行了进一步的培训,他于2022年5月加入HMS Duncan担任武器部门官员(WSO)。随后,他于2023年1月继续成为通信和信息系统工程师(CISE),对目前如何配置军事通信有了很好的了解。现在的Colbeck中尉,他担任HMS Duncan董事会的副武器工程师(DWEO),并在撰写本文时,在地中海的北约北约海上2(SNMG2)中部署。 在工作之外,他继续参与对计算机编程的兴趣,在业余时间教人们以及对橄榄球的持续兴趣。 他现在与他最近在2022年12月结婚的妻子安娜贝尔(Annabel)住在萨里吉尔福德(Guildford)。。现在的Colbeck中尉,他担任HMS Duncan董事会的副武器工程师(DWEO),并在撰写本文时,在地中海的北约北约海上2(SNMG2)中部署。在工作之外,他继续参与对计算机编程的兴趣,在业余时间教人们以及对橄榄球的持续兴趣。他现在与他最近在2022年12月结婚的妻子安娜贝尔(Annabel)住在萨里吉尔福德(Guildford)。
工业化和城市化的加速度将不可避免地导致HMS污染进入环境。尤其是在农业环境中,农业,施肥,灌溉和其他农业活动可能导致土壤中的HM浓度高,导致大多数HMS变得更加活跃,因此不可避免地会被农作物吸收(Dalcorso等,2013)。HMS由于其高毒性,隐藏性和团聚而成为作物影响最严重的污染物之一。hms可以通过抑制酶功能,破坏核酸结构并干扰植物营养素的摄取,从而对作物的生长,生物量和光合作用产生负面影响,从而对可持续食品产生构成威胁。此外,土壤中HMS的高含量也是农产品安全的挑战。过度摄入含有HM的食物会对人类健康造成不可逆转的伤害(Qin等,2021)。根际是植物吸收养分和微量元素的关键,它是土壤植物 - 微生物相互作用的界面。土壤中的重金属离子必须通过植物根部进入植物的体内。作为与植物最近的邻居,根微生物通过参与土壤腐殖质的形成和转化,土壤中养分的循环等,改善土壤结构和土壤肥力。同时,根微生物还可以分泌植物激素,以促进农作物对养分的吸收和利用,并增加农作物的根生长和生物量(Etesami和Maheshwari,2018; Manoj等,2020)。然而,高浓度的HM会通过诱导微生物代谢性疾病来引起非生物压力(Wyszkowska等,2013),例如蛋白质变性,细胞膜瓦解,改变酶特异性酶,特异性酶,破坏细胞功能和DNA结构(Abdu等,2017年的结构;微生物社区。值得注意的是,由HMS压力引起的根微生物结构和数量的变化可以严重影响根系的生态平衡,从而导致农作物生长的下降和农产品的质量(Shen等,2019)。因此,为了确保粮食安全和人类健康,迫切需要寻求适当的措施(土壤改善和微生物社区法规),以补救农田土壤中的HMS污染。
在被任命为阿拉伯湾 HMS DEFENDER 的首席作战官和作战官期间,他在一段极度紧张的时期内工作,在此期间,DEFENDER 被任命为 7 艘英国舰艇和几支美国部队的指挥官任务组。随后,他担任英国水雷对抗部队参谋长,负责随时准备在全球部署的水雷战指挥和控制。2022 年,他担任 HMS BROCKLESBY 的 MCM2 机组 1 的指挥官,现在指挥 HMS CATTISTOCK,为英国提供弹性,直接支持最高级别的国防任务,并为全球行动提供支持。
- 一旦 CO 验证了成员通知,就会通知人事司令部,并再次通知 - 一旦成员抵达 HETU 并完成初步评估 • NBIMC 在 HIV 管理服务 (HMS) 中跟踪第二次验证样本结果 • 在 HMS HETU 模块中跟踪成员以重新评估合规性
本文的其余部分结构如下。接下来,我们在第 2 节中介绍“共生”和“人机共生”这两个术语的背景。第 3 节介绍了我们文献综述的方法。在随后的章节中,我们将介绍研究结果,从第 4 节中的概念化开始,其中我们讨论了目标、要求和边界。在第 5 节中,我们展示了 HMS 系统的设计方式,并提出了设计框架的方法。在第 6 节中,我们介绍了 HMS 的现状,并对 HMS 的未来发展进行了展望。我们在这三个部分的末尾对结果进行了解释和讨论。最后,在第 7 节中,我们总结了我们的工作,讨论了我们研究的局限性,并为进一步的研究提出了建议。
摘要目的:分化的人类簇(CD)300A,一种具有免疫受体酪氨酸抑制序列的I型跨膜蛋白,被研究为靶向血液学恶性肿瘤(HMS)的人类天然杀伤(NK)细胞的潜在免疫检查点。方法:我们实施了一个涉及CD300A配体磷脂酰丝氨酸(PS)的刺激系统,暴露于恶性细胞的外表面。此外,我们利用CD300A过表达,CD300A阻止系统和异种移植模型来评估CD300A对NK细胞在体外和体内环境中对HMS的影响。此外,我们探索了患者CD300A与HM进展之间的关联。结果:我们的发现表明PS会阻碍NK细胞的功能。增加的CD300A表达抑制了NK细胞的HM裂解。CD300A的过表达通过损害移植的NK细胞来缩短HM-XENORGARGED小鼠的存活。用抗体阻断PS – CD300A信号显着放大了NK细胞中裂解功能相关蛋白和效应细胞因子的表达,从而增强了裂解HMS的能力。在临床上,CD300A表达的增强与HMS或实体瘤患者的肿瘤内NK细胞的“疲劳”表型相关。结论:这些结果提出了CD300A作为对HMS基于NK细胞的治疗的潜在目标。关键字NK单元格; CD300A;磷脂酰丝氨酸;免疫检查点;血液系统恶性肿瘤
Teresa Magoga 和 Brett A. Morris 海事部门国防科学技术组 DST-Group-TN-1826 摘要 对未安装船体监控系统 (HMS) 的澳大利亚皇家海军 (RAN) 新型舰艇的结构寿命 (LOT) 管理考虑因素、假设和选项进行了初步研究。该研究使用批判性思维或“红队”技术来确定不在 RAN 舰艇上安装 HMS 的后果,以及确定不使用 HMS 的 LOT 管理策略。主要后果是 RAN 管理 LOT 风险和船队可用性的能力将受到影响。确定了三种替代 LOT 管理策略,这会导致对 RAN 舰艇 LOT 风险管理的信心水平降低。这主要是因为需要有关船舶运营使用情况的准确数据才能高度自信地管理其 LOT 风险。这些数据与数字孪生等新兴技术相结合,为 RAN 成为“智能船东”提供了基于条件的维护和支持机会。然而,在 RAN 船上实施 HMS 将产生终身财务和人力资源成本,决策者需要权衡这些成本与 LOT 管理和其他利益。发布限制已批准公开发布。
有条件的人运动合成(HMS)旨在产生符合特定条件的人类运动序列,哪种文本和音频是用作条件的两个主要模态。虽然现有的研究主要是在单一条件下进行的,但多条件的Human运动合成仍然没有被逐渐解散。在这项研究中,我们根据由主分支和控制分支组成的双分支结构提出了一个多条件HMS框架,称为MCM。该框架有效地扩展了扩散模型的可观性,该模型最初仅基于文本条件,并将其延伸到听众条件。此扩展包含音乐到舞蹈和共同语音的HMS,同时保留了动作模型中固有的固有运动质量和语义关联的Capabilies。此外,我们提出了将基于变压器的扩散模型(指定为MWNET)为主要分支的实用。该模型擅长理解运动固有的空间复杂性和相互关联相关性,这是通过多明智的自我发项模块的整合来促进的。广泛的实验表明,我们的方法实现了单条件和多条件HMS任务的竞争结果。
重金属(HMS)由人类活动引起的土壤污染是对人类健康和可持续社会发展的严重威胁。重金属污染的阴险,滞后,长期,不均匀和不可逆转的性质导致土壤生态结构和功能的严重退化。最重要的是,土壤中的重金属可以通过食物链(食品作物)富含动物或人类,威胁人类健康和生命(Jan等,2015)。因此,对土壤的重金属进行修复一直是环境修复领域的关键问题之一。与物理或化学补救技术相比,微生物修复技术以其绿色,低成本,易于操作和长期可持续性而逐渐认可(Maity等,2019)。尽管大多数HM都难以降解和通过微生物在土壤中的微生物去除,但微生物(微生物摄取,转化,矿化或固定化)可以将HMS转化为毒性较小或降低其迁移率(Kotrba和Ruml和Ruml,Ruml,2000,2000; Lin等,2023; Lin。,2023)。其中,生物矿化是一种常见有效的方法来修复土壤中HMS污染的方法,这主要是通过微生物和HMS之间的相互作用形成矿物晶体(例如,磷酸盐,碳酸盐,碳酸盐,硫酸盐,氧化盐,砷酸盐,氧化盐,氧化物,氧化物,氧化物,氧化物氧化物等)<在微生物细胞之间,之间或之内(Tayang和Songachan,2021; Lin等,2023)。不仅在多达60种生物矿化产品中,金属磷酸盐由于其高稳定性而引起了人们的关注。
多样性包容和社区伙伴关系DICP任务办公室多样性包容和社区部分伙伴关系办公室(DICP)的使命是将多样性纳入健康,生物医学,行为和STEM领域,以建立个人和机构能力,以实现卓越,促进卓越,促进创新,并确保在健康中的健康状况,并在国家,全球和全球范围内和全球范围内。About DICP The Office for Diversity Inclusion and Community Partnership (DICP) at Harvard Medical School (HMS) was established to promote the increased recruitment, retention and advancement of diverse faculty, particularly individuals from groups underrepresented in medicine (URM), at HMS and to oversee all diversity and inclusion activities involving HMS facul- ty, trainees, students and staff.DICP的少数族裔教师发展计划(MFDP)成立于1990年,赞助了HMS教职员工的发展计划,重点是指导和领导力,以及签署的计划,这些计划将签署,以与前大学和大学人口联系,以便将杰出的学生,尤其是URM学生带入管道。在MFDP的宙斯盾下,有几个计划旨在培养和鼓励对医学和/或生物医学科学职业感兴趣的才华横溢的学生。有关DICP的更多信息,请访问:https://dicp.hms.harvard.edu