摘要。研究相关性是由在难以到达条件下改善对象大小的测量过程的需要决定的。在现代工业环境中,高测量精度对于确保安全和最大化生产过程的效率至关重要,对该主题的研究在快速技术发展和提高生产质量要求的背景下是相关的。该研究旨在评估使用现代计算机视觉方法在困难的技术条件下测量和重建对象的可能性,例如水 - 水功率反应堆的封闭。该研究采用了3D摄影测量方法,包括立体声和多视图立体声的深度,以及运动方法的结构。研究确定,现代计算机视觉方法,特别是机器学习方法,可以成功地用于在难以到达的条件下测量和重建对象。研究表明,在理想条件下,从测量设备到对象的测量精度可以达到接近1 mm的值。同时,与立体声方法的深度相比,多视图立体法揭示了误差的空间分布更大的均匀性。在实践中,在真实照片的条件下,多视图立体声方法最需要准确地确定相机的位置。由于其对摄像机确切坐标的需求较低,立体声方法的深度显示出更好的结果,显示出较小的测量误差。这项研究强调了使用所提出的方法区分
11 瑞士伯尔尼大学医院 Inselspital 心脏病学、预防心脏病学和运动医学大学诊所 12 瑞士苏黎世大学儿童医院心脏病学系 13 奥地利维也纳医科大学维也纳综合医院生物医学成像和图像引导治疗系 14 瑞士洛桑大学 (UniL) 生物与医学学院 15 瑞士日内瓦日内瓦大学医院 (HUG) 心脏病学分部 16 参与中心和研究人员的完整列表见附录。 * 这些作者对研究设计、数据解释和手稿准备做出了同等贡献。 通讯地址 Matthias Greutmann,医学博士,先天性心脏病负责人,苏黎世大学医院心脏中心,Raemistrasse 100,8091 苏黎世,瑞士。电子邮件:Matthias.greutmann@usz.ch;电话:++41 44 255 3883 字数:3510字
学术诚信:所有学生必须遵守大学的学术诚信政策,该政策可在学生行为和冲突解决办公室 (OSCCR) 的网站上找到,网址为 http://www.northeastern.edu/osccr/academicintegrity/index.html。请特别注意有关剽窃的政策。您可能知道,剽窃涉及将任何其他人的言语或想法视为自己的。无论您从何处获得这些想法 - 来自书籍,网络,同学还是母亲。无论您是直接引用来源还是改写来源;如果您不是这些词语或想法的创作者,您必须清楚明确地说明它们的出处。如果您在准备任何作业时有任何困惑或疑虑,请咨询导师,以便一起完成。您还可以在 NU 图书馆网站 http://www.lib.neu.edu/online_research/help/avoiding_plagiarism/ 上查阅“避免剽窃”指南。如果出现学术诚信问题,我们的一位讲师将与您讨论;如果讨论未能解决问题,我们将把问题提交给 OSCCR。
● 抗炎分子,如 TGF-beta、BDNF ● 产生神经修复因子,如精氨酸转化产生的胶原蛋白 ● 氧化磷酸化状态 ● 健康的免疫反应:M1 小胶质细胞利用促炎细胞因子和吞噬作用杀死病原体,然后转变为 M2
IEEE 是一家非盈利组织,是世界上最大的技术专业组织,致力于推动技术进步,造福人类。© 版权所有 2023 IEEE - 保留所有权利。使用本网站即表示您同意条款和条件。
强密码策略:首先通过强大的密码策略加固路由器的安全性。避免使用默认用户名和密码,选择包括字母,数字和特殊字符的唯一组合。定期更新密码会增加针对未经授权访问的额外防御层。固件更新:常规更新路由器的固件是解决潜在漏洞的主动措施。制造商发布了对补丁安全缺陷并提高整体性能的更新。忽略固件更新会使您的网络暴露于已知的利用,因此必须与最新版本保持一致。防火墙配置:激活和配置路由器的防火墙,以有效地过滤和传出流量。自定义防火墙设置可确保仅允许合法数据通过,从而阻止恶意尝试渗透您的网络。网络细分:将您的网络分为细分市场以限制未经授权的访问。这对于较大的网络尤其重要,在大型网络中,不同的段可能具有不同级别的访问权限。实施网络细分可防止一个区域中的违规行为损害整个网络。虚拟专用网络(VPN)集成:将VPN合并到路由器设置中加密数据流量,使恶意参与者更难
接种疫苗预防 COVID-19 等传染病是个人、社区和政府的责任,不受国界限制。公平获得免疫接种是健康权的核心组成部分。在资源极度匮乏的情况下,比如我们即将面临的情况,强有力的疫苗分配系统对于抗击导致当前大流行的病毒至关重要。明智的决策和实施策略对于确保疫苗接种计划的可持续性至关重要。只有通过学习、持续改进和研发创新,以及疫苗接种各个方面的质量改进,才能充分发挥疫苗接种的潜力。通过优先为我们的一线工作人员和我们人口中最容易感染 COVID-19 的人群提供疫苗接种计划,公平分配将对其余普通公众产生巨大影响。
摘要:利用工程原理重新设计生物体是合成生物学 (SynBio) 的目的之一,因此实验方法和 DNA 部件的标准化变得越来越必要。专注于酿酒酵母工程的合成生物学界一直处于这一领域的前沿,构想出了几种被该界广泛采用的特征明确的合成生物学工具包。在本综述中,我们将讨论为酿酒酵母开发的分子方法和工具包对所需标准化工作的贡献。此外,我们还回顾了为新兴非常规酵母物种设计的工具包,包括解脂耶氏酵母 (Yarrowia lipolytica)、Komagataella phaffii 和马克斯克鲁维酵母 (Kluyveromyces marxianus)。毫无疑问,这些工具包中强调的特征化 DNA 部件与标准化组装策略相结合,极大地促进了许多代谢工程和诊断应用等的快速发展。尽管在常见酵母基因组工程中部署合成生物学的能力不断增强,但酵母界在生物自动化等更复杂、更精细的应用中还有很长的路要走。关键词:标准化、特性、生物部件、酵母工具包、合成生物学、自动化
尽管人们越来越意识到外来物种所带来的威胁,但它们仍在人类的帮助下不断抵达南极洲,其中一些物种不可避免地具有侵略性。在这里,我们首次报告了 2021/2022 年南半球夏季在南极洲出现的全球性物种 Psychoda albipennis(双翅目,Psychodidae;俗称蛾蝇),并使用传统的分类学和分子方法确认了其身份。该物种数量非常大,虽然在人类共存的情况下主要与南极国家运营站的排水和废水系统有关,但它也存在于周围的自然栖息地中。虽然尚不清楚 P. albipennis 是否能够长距离传播,但已知成年的蛾蝇可以从它们的出现地点传播超过 90 米,在风的帮助下可以传播 1.5 公里。因此,一旦在乔治王岛的自然环境中定居,该物种似乎极有可能迅速成为入侵物种。引入 P. albipennis 等非本地物种可能是未来生物多样性变化和丧失的重要驱动因素,并严重影响生态系统健康。在脆弱的低多样性生态系统中,例如在南极洲的陆地环境中,非本地物种可能导致生态功能和相互作用发生重大变化,取代本地物种,并可能导致本地生物群落灭绝。