海洋保护区(MPA)正在全球部署,以保护地球的生物多样性在快速变化的海洋中。自适应MPA管理和监测中的气候变化考虑因素正在成为一种更普遍的方法,尽管MPA规划中越来越多地解决气候变化,但仍然存在实施差距。本研究将气候鲁棒性指数(CRI)应用于MPA监测计划,以评估场地和区域层面计划中如何概述气候变化。以前开发了用于评估MPA管理计划的,CRI分数计划基于其气候变化适应原理的纳入程度,包括适应性管理的核心要素。我们通过将美国MPA的指数分数与选定的MPA特征相关联,并通过检查特定的物理,生态和社会气候变化的影响,并在监测计划的监测范围内考虑,并研究了特定的物理,生态和社会气候变化的影响,从而为监测计划提供了补充。我们在MPA监视计划中发现可起作的目标和阈值的差距很大,这与先前评估MPA管理计划的研究一致,这表明在许多情况下,自适应管理周期是不完整的。我们将完成自适应管理周期的重要性视为一种核心气候适应策略,并探索社会生态目标和地方伙伴关系的作用,这是在不断变化的世界中继续改善MPA结果的途径。
摘要在2018年和2019年,Heatwaves在全球范围内创造了历史记录,并对人类健康,农业,自然生态系统和基础设施造成了不利影响。通常,严重影响与热浪的关节空间和时间范围有关,但是到目前为止,大多数研究都集中在热浪的空间或时间属性上。此外,很少讨论热浪特征对在温暖气候下选择热波阈值的敏感性。在这里,我们在全球气候模型的模拟中分析了最大的时空中度热浪(即炎热日的三维(时空)簇)。我们使用三个不同的危险阈值来定义炎热的一天:固定阈值(时间不变的气候阈值),根据夏季平均值的变化,季节性移动阈值以及完全移动的阈值(相对于未来的气候学定义的炎热日子)。我们发现,使用固定阈值的全球变暖,时空连续的中度连续热带大幅增加,而其他两个危险阈值的变化却不那么明显。尤其是,当使用时间完全移动的阈值相对于将来的气候定义时,检测到热浪定义的整体幅度,空间范围和持续时间的变化很小或很少。这表明与全球气候模型模拟中的动态效应相比,热力学的主要贡献。季节性移动和完全移动的阈值之间的相似性表明,单独的季节性平均变暖可以解释极端变暖的大部分。在潜在的未来热有关影响的预测中应考虑模拟未来热浪对危险阈值的强烈敏感性。
Brian Drake 是国防情报局未来能力与创新办公室的人工智能主任。他领导该机构的人工智能研究和开发投资组合。作为一名分析师,他领导多个团队应对来自国家和非国家行为者的威胁,涉及技术、反情报和禁毒主题。他曾担任德勤咨询公司的经理和托夫勒联合公司的管理顾问,专门为商业和政府客户提供战略规划、业务发展、合作咨询、技术和创新服务。他还曾担任系统规划和分析公司的军事平台和政策分析师以及 DynCorp 的核武器计划分析师。他拥有默瑟大学的文学学士学位和乔治城大学的硕士学位。除了他的官方职责外,他还是国防情报纪念基金会的总裁兼首席执行官;为阵亡国防情报官员的子女设立的奖学金基金。
该研究探讨了马哈拉施特拉邦 Hiware Bazaar 村农户采用数字技术的情况。Hiware Bazaar 村以集体努力和创新农业实践成功从干旱社区转变为繁荣社区而闻名。该研究采用了全面的案例研究方法,包括采访、调查和与当地农民的焦点小组讨论,以收集详细见解。结果表明,人们对数字工具的认识和使用程度很高,例如用于市场价格、天气预报和作物管理的移动应用程序,这些工具已显著提高作物产量和资源管理。尽管有这些好处,但该研究也发现了一些挑战,例如培训有限、基础设施不足以及社会文化对技术采用的抵制。结论强调了数字技术在印度农村地区彻底改变农业实践的潜力,倡导加强教育计划、基础设施建设、有针对性的激励措施和社区参与,以克服这些障碍。此外,它建议将传统农业知识与现代数字工具相结合,以最大限度地发挥效益并确保可持续发展。
尽管在日常任务中对弱势群体(例如,老年人,儿童和残疾人)的辅助技术有很大的需求,但对高级AID辅助解决方案的研究确实满足了他们的各种需求,这仍然很少。传统的人机互动任务通常需要机器来简单地帮助您对人类能力和感觉的细微差别,例如他们进行实践和学习的机会,自我改善感和自尊心。解决这一差距时,我们定义了一个关键而新颖的挑战智能帮助,旨在为各种残疾人的人提供积极主动而自适应的支持,并在各种任务和环境中提供动态目标。为了确定这一挑战,我们利用AI2- [32]来构建一个新的互动3D实体家庭环境,以完成智能帮助任务。我们采用了一个创新的对手建模模块,该模块对主要代理的能力和目标有细微的理解,以优化辅助代理人的帮助政策。严格的实验验证了我们的模型组件的功效,并显示了我们整体方法与已建立基线的优越性。我们的发现说明了AI所辅助机器人在改善弱势群体的福祉方面的潜力。
自发现胰岛素以来,低血糖一直是糖尿病患者最佳血糖结局的障碍。国际低血糖研究小组定义了低血糖的三种生化分类:1级,低于≤3.9mmol/L; 2级,低于≤3.0mmol/l;和第3级,基于生理和认知反应的阈值,严重的低血糖(需要第三方辅助)1,2。对糖尿病患者的日常功能和生活质量(QOL)的不同方面的这些水平对糖尿病患者的不同方面的不同影响知之甚少。在过去的十年中,测量间质葡萄糖的连续葡萄糖监测(CGM)设备在临床实践中越来越多地使用,研究表明,低血糖的发作明显多于毛细血管血糖(CBG),具有八个
通过这项最新工作,该团队开发了一种方法来调整现有的大脑解码器,对艰难的方式进行训练,并在观看短暂而无声的视频(例如Pixar Shorts)的同时,在fMRI扫描仪中只有一个小时的培训。研究人员开发了一种转换器算法,该算法学习如何将新人的大脑活动映射到以前用于训练大脑解码器的活动的人的大脑上,从而在与新人的一小部分中导致了类似的解码。
确定免疫反应与对有症状的 SARS-CoV-2 感染(即 COVID-19)的保护之间的关系有助于预测疫苗的未来有效性。这种关系应能实现免疫桥接(即预测候选疫苗的功效),有助于根据免疫原性数据批准新的或更新的疫苗,而无需进行大规模的 3 期试验 (1)。欧盟和美国使用免疫桥接来批准季节性流感疫苗,并降低了开发疫苗所需的成本和时间。此外,确定预防新型 SARS-CoV-2 变体所需的免疫水平将有助于预测人群水平的感染免疫力,并指导有关疫苗接种和加强接种的公共卫生政策。
要将以环境得出的元编码数据转换为社区矩阵进行生态分析,必须首先将序列聚集到操作分类单元(OTU)中。此任务对于包括大量带有不完整参考库的数据,包括大量的分类单元。OptimoTU提供了一种具有分类学意识的OTU聚类方法。它使用一组分类学识别的参考序列来选择最佳的遗传距离阈值,以将每个祖先分类群分组为最与后代分类单元最匹配的集群。然后,查询序列根据初步分类学标识和其祖先分类群的优化阈值聚类。该过程遵循分类学层次结构,从而将所有查询序列的所有查询序列完全分类为命名的分类学组以及占位符“ Pseudotaxa”,这些序列适合无法分类为相应等级的命名分类单元的序列。Optimutu聚类算法是作为R软件包实现的,在C ++中实现了速度的计算密集步骤,并合并了成对序列对齐的开源库库。距离也可以在外部计算,并且可以从UNIX管道中读取,从而允许大型数据集聚类,在该数据集中,整个距离矩阵将不方便地存储在内存中。Optimutu生物信息学管道包括一个完整的工作流程,用于配对端的Illumina测序数据,其中包含了质量过滤,DeNoising,Wratifact删除,分类学分类以及与Optimotu的OTU集群。开发了用于高性能计算簇的OptimoTU管道,并将其缩放到每个样品和数万个样本的数据集中。