蚱hopper问题 - Olga Goulko摘要:蚱hopper在一个区域的平面草坪上随机地降落。然后,它在随机方向上使固定距离d的跳转一次。草坪应该是什么形状,以最大程度地增加蚱hopper在跳跃后留在草坪上的机会?这个很容易说明但很难解决数学问题,这与量子信息和统计物理学具有有趣的联系。球体上的广义版本可以提供对新的贝尔不平等现象的见解。一个离散版本可以通过自旋系统建模,代表具有固定范围交互的新类别统计模型,其中范围D可以很大。我会证明,也许令人惊讶的是,没有D> 0的圆盘形草坪是最佳的。如果跳跃距离小于单位盘的半径,则最佳草坪类似于齿轮,在较大d时向更复杂,断开的形状过渡。可以使用平行的回火蒙特卡洛(Monte Carlo)进行离散自旋模型,可以鉴定出具有不同对称特性的几类最佳草坪形状。
进化创新产生了表型和物种多样性。阐明此类创新背后的基因组过程对于理解生物多样性至关重要。在这项研究中,我们探讨了农业害虫玻璃翅神枪手(Homalodisca vitripennis,GWSS)进化新奇性的基因组基础。叶蝉的突出进化创新包括支体,这是一种排出并用于覆盖身体的蛋白质结构,以及与两种细菌类型的强制性共生关系,这两种细菌类型驻留在不同细胞类型的细胞质中。使用 PacBio 长读测序和 Dovetail Omni-C 技术,我们为 GWSS 生成了染色体水平的基因组组装,然后使用流式细胞术和核型分析验证了该组装。额外的转录组学和蛋白质组学数据用于识别支体产生的新基因。我们发现,支体相关基因包括通过串联重复而多样化的新基因家族。我们还确定了与细菌共生体相互作用的基因位置。GWSS 的祖先通过水平基因转移 (HGT) 获得了细菌基因,这些基因似乎有助于共生体支持。使用系统基因组学方法,我们推断了 HGT 的来源和时间。我们发现一些 HGT 事件可以追溯到半翅目 Auchenorrhyncha 亚目共同祖先,代表了动物中已知的一些最古老的 HGT 例子。总体而言,我们表明叶蝉的进化新颖性是通过获得新基因(从头产生和通过串联重复产生)、获得新的共生关联(允许使用新的饮食和生态位)以及招募外来基因来支持共生体和增强食草性而产生的。
使用可持续能源系统 (SES) 为偏远社区提供离网电气化是实现可持续发展目标的必要条件。尽管如此,SES 的容量规划仍具有挑战性,因为它需要从长期角度满足波动的需求,此外还具有可再生能源 (RES) 的间歇性和不可预测性。由于容量规划问题的非线性和非凸性,必须采用有效的技术来实现具有成本效益的系统。现有技术受到目标函数可导性和连续性方面的一些限制,容易过早收敛,计算要求高,在不同应用中遵循严格的程序来微调算法参数,并且通常无法在优化过程的开发和探索阶段提供公平的平衡。此外,文献综述表明,研究人员在计算微电网容量规划问题时通常不会实施和检查微电网的能源管理方案 (EMS)。本文提出了一种基于规则的 EMS (REMS),它由受自然启发的草跳优化算法 (GOA) 优化,用于独立于电网的微电网的长期容量规划,该微电网包含风力涡轮机、光伏发电、电池 (BT) 组和柴油发电机 (D gen)。其中,基于规则的算法用于实施 EMS,以优先使用 RES 并协调所提议微电网组件的功率流。随后,尝试探索和确认与 GOA 结合的所提议 REMS 的效率。目标函数的最终目标是最小化能源成本 (COE) 和供电概率不足 (DPSP)。通过长期模拟研究检查 REMS 的性能,以确定 REMS 的弹性并确保不违反 BT 存储的运行限制。将 GOA 的结果与粒子群优化 (PSO) 和布谷鸟搜索算法 (CSA) 进行了比较。模拟结果表明,所提出的技术在收敛到最优解方面具有优越性。模拟结果证实,所提出的 REMS 有助于更好地采用更清洁的能源生产系统,因为与传统的 D gen 相比,该方案分别显着降低了燃料消耗、二氧化碳排放量和 COE 92.4%、92.3% 和 79.8%。算法的比较评估表明,REMS-GOA 的结果更佳,因为它提供的 COE(目标函数)最低,为 0.3656 美元/千瓦时,而 REMS-CSA 为 0.3662 美元/千瓦时,REMS-PSO 为 0.3674 美元/千瓦时,对于期望的 DPSP 为 0%。最后,进行敏感性分析,以突出未来可能出现的不确定性对系统输入的影响。
摘要 - 在本文中,通过在每个阶段选择和优化合适的结构,我们设计了一个多功能低噪声斩波器放大器。具有高CMRR和PSRR的拟议的神经斩波器放大器适用于EEG,LFP和AP信号,而NEF较低。为了最大程度地减少噪声并增加带宽,选择了单阶段的电流重复使用放大器,并选择了抗伪式的共同模式反馈,而在第二阶段实现了一个简单的完全差异放大器,以提供高摆动。具有活性RC积分器的DC伺服回路旨在阻止电极的直流偏移,并使用正反馈回路来增加输入阻抗。最后,使用了区域和功能效率的纹章减少技术和切碎的尖峰过滤器,以具有清晰的信号。设计的电路在市售的0中模拟。18 µm CMOS技术。3。7 µA电流来自±0。6 V供应。总带宽从50 MHz到10 kHz,而该带宽中的总输入引用噪声为2。9 µV RM,中带增益约为40 dB。设计的放大器可以忍受高达60 mV的DC电极偏移量,并且积极反馈回路的放大器输入阻抗为17mΩ,而切碎频率为20 kHz。随着设计的连锁降低,由于在切碎频率下的上调噪声,输入引用的噪声中只有一个可忽略不计的峰。为了证明设计电路的性能,进行了500个蒙特卡洛分析以进行过程和不匹配。CMRR和PSRR的平均值分别为94和80 dB。索引项 - 仪器放大器,高CMRR,交叉耦合OTA,电流reuse ota。