来自英国剑桥的 Krishna Chatterjee 教授是 2025 年欧洲激素奖章获得者。他将在哥本哈根举行的 ESPE 和 ESE 联合大会上发表获奖演讲。请继续阅读,了解有关他在内分泌学领域的职业生涯、他对未来内分泌学家的建议以及您可以期待在大会上听到他谈论的内容的更多信息。 请告诉我们您目前的职位 我在英国剑桥大学代谢科学研究所工作。我的研究涵盖基础临床界面,并转化为针对罕见和不寻常的甲状腺疾病的诊断服务。此外,我很荣幸能够指导剑桥临床研究中心和针对健康专业人员的博士课程。 您在内分泌学方面走上了怎样的职业道路? 我毕业于剑桥大学,在牛津大学完成临床培训。我首先在伦敦汉默史密斯医院接受 Steve Bloom 的内分泌学培训,然后在美国马萨诸塞州波士顿的麻省总医院甲状腺科与 Larry Jameson 一起进行研究。 1990 年,我回到剑桥临床医学院,由 Keith Peters 领导。1998 年,我被任命为内分泌学教授。我们的研究一直得到 Wellcome 的支持,最近又得到了英国国立卫生研究院的支持。在 2025 年 ESE 和 ESPE 联合大会的颁奖演讲中,您将讨论什么?我将介绍我们团队在甲状腺激素作用领域的显著贡献。我们定义了一种多系统疾病,通常在儿童时期出现,原因是 SECISBP2 发生突变,该基因控制含硒半胱氨酸的蛋白质的合成。这种综合征与甲状腺激素代谢紊乱和表型(如肌营养不良症、无精子症)有关,这是由于组织特异性硒蛋白缺乏引起的,以及由于缺乏抗氧化硒酶而导致的特征(如光敏感性、进行性听力损失、主动脉瘤)。独特的是,这种疾病说明了氧化应激对人类的影响。
* 共同通讯作者:Juliana Navarro-Yepes,博士,德克萨斯大学 MD 安德森癌症中心实验放射肿瘤学系,6565 MD Anderson Blvd.,休斯顿,德克萨斯州 77030,美国。电话:785-979-2300。junay14@gmail.com(现地址:Systemic Bio™ 3D Systems 公司。2450 Holcombe Blvd, Suite A, Houston, TX, 77021),Khandan Keyomarsi,博士,德克萨斯大学 MD 安德森癌症中心实验放射肿瘤学系,6565 MD Anderson Blvd.,休斯顿,德克萨斯州 77030,美国。电话:832-628-8841。kkeyomar@mdanderson.org。利益冲突:J. Navarro-Yepes:无。 NM Kettner:无。X. Rao:无。CS Bishop:无。T. Bui:无。HF Wingate:无。AS Raghavendra:无。Y. Wang:无。J. Wang:无。A. Sahin:无。 F. Meric-Bernstam:AbbVie、Aduro BioTech Inc.、Aileron Therapeutics Inc.、Alkermes、阿斯利康、Black Diamond、拜耳医疗制药、Biovica、Calithera Biosciences Inc.、Curis Inc.、CytomX Therapeutics Inc.、第一三共株式会社、DebioPharm、Ecor1 Capital、eFFECTOR Therapeutics、卫材、F. Hoffman-La Roche Ltd.、FogPharma、GT Apeiron、Genentech Inc.、Guardant Health Inc.、Harbinger Health、IBM Watson、Immunomedics、Infinity Pharmaceuticals、Inflection Biosciences、Jackson Laboratory、Karyopharm Therapeutics、Kolon Life Science、Klus Pharma、Lengo Therapeutics、Loxo Oncology、Menarini Group、Mersana Therapeutics、诺华、OnCusp Therapeutics、OrigiMed、PACT Pharma、Parexel International、辉瑞公司、Protai Bio Ltd、Puma Biotechnology Inc.、Samsung Bioepis、赛诺菲、Seattle Genetics Inc.、Silverback Therapeutics、Spectrum Pharmaceuticals、Taiho Pharmaceutical Co.、武田制药、Tallac Therapeutics、Tyra Biosciences、Xencor、Zentalis、Zymeworks KK Hunt:Armada Health、阿斯利康、Cairn Surgical、礼来公司、Lumicell。S. Damodaran:EMD Serono、Guardant Health、诺华、辉瑞、Sermonix、Taiho。D. Tripathy:阿斯利康、葛兰素史克、吉利德、诺华、OncoPep、辉瑞、Polyphor、Personalis、Puma Biotechnology、Sermonix、Stemline-Menarini。K. Keyomarsi:Apeiron、BluePrint、REPARE、Schrodinger 和诺华。
雌激素的局部形成和作用在激素依赖性癌症和子宫内膜异位症等良性疾病中起着至关重要的作用。目前用于治疗这些疾病的药物作用于受体和前受体水平,靶向雌激素的局部形成。自 1980 年代以来,芳香化酶抑制剂一直靶向雌激素的局部形成,该抑制剂催化雄激素形成雌激素。类固醇和非类固醇抑制剂已成功用于治疗绝经后乳腺癌,并在子宫内膜癌、卵巢癌和子宫内膜异位症患者的临床研究中进行了评估。在过去十年中,催化无活性雌激素硫酸盐水解的硫酸酯酶抑制剂也进入了治疗乳腺癌、子宫内膜癌和子宫内膜异位症的临床试验,临床效果主要在乳腺癌中观察到。最近,17β-羟基类固醇脱氢酶 1 抑制剂(一种负责形成最强效雌激素雌二醇的酶)在临床前研究中显示出良好的效果,并已进入子宫内膜异位症的临床评估。本综述旨在概述激素药物在治疗主要激素依赖性疾病方面的现状。此外,它还旨在解释这些药物有时观察到的微弱作用和低治疗效果背后的机制,以及针对局部雌激素形成中的几种酶或具有不同治疗机制的药物进行联合治疗的可能性和优势。
摘要人体和环境之间的独特相互作用,反映了宿主 - 微生物组相互作用,这些相互作用有助于性别差异性疾病敏感性,症状和治疗结果。这些差异源自单个生物学因素,例如性激素作用,性别分散的免疫过程,X连锁基因剂量效应和表观遗传学,以及它们在整个寿命中的相互作用。肠道微生物组越来越被公认为是几个身体系统的主持人,因此受其功能和组成影响。在人类中,生物学成分进一步与性别特定的暴露相互作用,例如饮食偏好,压力源和生活经验,形成复杂的整体,需要创新的方法论才能解散。在这里,我们总结了有关性激素,肠道菌群,免疫系统和血管健康之间相互作用的最新知识,以及它们与心血管疾病性差异流行病学的相关性。我们概述了临床含义,确定知识差距,并重点介绍了未来的研究以解决这些差距。此外,我们还概述了与需要考虑性别/基因差异的心血管研究相关的警告。虽然先前的工作已经分别检查了其中几个组件,但我们在这里引起人们的注意,从心血管转化研究,性别医学和Mi-Crobiome Systems Biology的联合观点进一步转化实用性。
目的:Prader - Willi综合征(PWS)是一种神经发育障碍,由于位于15q11-Q13染色体上的印迹基因的缺乏症,导致下丘脑功能障碍。中,SNORD116基因对于PWS表型的表达至关重要。我们旨在阐明SNORD116在细胞和动物模型中在生长激素治疗(GHT)方面的作用,这是PWS的主要批准治疗。方法:我们从GH处理的PWS患者中收集了血清和诱导的多能干细胞(IPSC),以分化为多巴胺能神经元,并同时使用SNORD116敲除小鼠模型。我们分析了与GH反应性有关的因素的表达。结果:我们发现在幼稚的PWS患者中循环IGFBP7水平升高,在GHT下IGFBP7水平正常化。我们发现SNORD116基因敲除小鼠的大脑以及来自SNORD116删除的PWS患者的IPSC衍生的神经元中的IGFBP7水平升高。PWS患者中IGFBP7的高循环水平可能是由于IGFBP7表达增加和通过下调Proconvertase PC1而导致的IGFBP7表达和IGFBP7裂解的降低。 结论:SNORD116缺失会影响IGFBP7水平,而PWS患者的GHT下IGFBP7降低。 与IGF1相互作用的IGFBP7水平的调节对GHT下的PWS的病理生理学和管理具有影响。PWS患者中IGFBP7的高循环水平可能是由于IGFBP7表达增加和通过下调Proconvertase PC1而导致的IGFBP7表达和IGFBP7裂解的降低。结论:SNORD116缺失会影响IGFBP7水平,而PWS患者的GHT下IGFBP7降低。与IGF1相互作用的IGFBP7水平的调节对GHT下的PWS的病理生理学和管理具有影响。
甲状腺激素 (TH) 稳态失调与急性和长期疾病的预后不良有关,但其在糖尿病视网膜病变 (DR) 中的作用尚未被研究过。在这里,我们表征了 db/db 小鼠视网膜中的 TH 系统并强调了 MIO-M1 细胞中的调节过程。在 db/db 视网膜中,DR 的典型功能特征和分子特征与组织限制性的 TH 水平降低相伴而生。还证实了局部低 T3 (LT3S) 状况,这可能是由脱碘酶 3 (DIO3) 上调以及 DIO2 和 TH 受体表达降低引起的。同时,T3 反应基因,包括线粒体标志物和微小 RNA(miR-133-3p、338-3p 和 29c-3p),被下调。在 MIO- M1 细胞中,存在反馈调节回路,其中 miR-133-3p 以 T3 依赖的方式触发 DIO3 的转录后抑制,而高葡萄糖 (HG) 通过核因子红细胞 2 相关因子 2 - 缺氧诱导因子 1 途径导致 DIO3 上调。最后,体外模拟早期 LT3S 和高血糖状态与线粒体功能和应激反应标志物减少相关,而 T3 替代可逆转这一情况。总之,数据表明,在 DR 的早期阶段,DIO3 驱动的 LT3S 可能对视网膜应激有保护作用,而在慢性期,它不仅无法限制 HG 引起的损伤,而且还可能由于持续的线粒体功能障碍而增加细胞脆弱性。
图3根据治疗组和APOEε4等位基因载体状态(正或负),Aβ1-42/p-TAU 231比率的纵向变化。注意:表示的值是指根据线性模型计算的估计边缘均值,以说明年龄的效果。HOC后成对组比较:对照APOEε4阴性-MHTAPOEε4阴性:P = 0.76,对照APOEε4阴性 - 对照APOE APOEε4阳性:P = 0.02,P = 0.02,对照APOEε4-阴性ε4-阴性-MHT APOE-MHT APOEε4型APOEεεεε4-aP = 0.95,MHT APOEε4-- MHT APOEε4-- MHT APOEε4-- MHT APOE,MHT,MHT,MHT,MHT apoEε三,MHT,MHT 4阳性:P = 0.008,MHTAPOEε4阴性-MHTAPOEε4阳性:P = 0.71,对照APOEε4阳性-MHT APOEε4阳性:P = 0.007。aβ,淀粉样β; apoe,载脂蛋白E; MHT,更年期激素疗法; p-tau 231,tau蛋白在现场苏氨酸231
摘要:心力衰竭影响着全球 6400 多万人,严重影响着他们的生存和生活质量。为了开发新的治疗方法,迫切需要探索其病理生理学和分子基础。甲状腺激素信号在进化上是保守的,它控制着基本的生物过程,在发育和代谢中起着至关重要的作用。它的活性形式是 L-三碘甲状腺原氨酸,它不仅通过与核受体结合来调节重要的基因表达,而且还具有非基因组作用,控制着关键的细胞内信号。应激刺激,如急性心肌梗塞,会导致甲状腺激素信号的变化,尤其是甲状腺激素与其核受体的关系的变化,这与胎儿发育程序的重新激活、心肌细胞的结构重塑和表型变化有关。信号传导中胎儿样特征的重现可能部分是心肌重现其发育程序并使心肌细胞增殖并最终再生的不完整努力。在这篇综述中,我们将讨论甲状腺激素在射血分数降低和保留的心力衰竭环境中心肌恢复中的作用的实验和临床证据及其未来的治疗意义。
摘要本综述提供了有关当前方法,原理和作用机理,用于检测乳腺癌进展和复发预后的治疗性能分子标志物,包括雌激素受体(ER),孕激素受体(PR)和人类胚芽生长因子受体2(HERS 2)。的确,激素受体,即ER,PR,原癌基因HER2是基本的分子标记物,用于治疗实践,被识别和确定的预后因素和反应的预测指标。可以通过使用免疫疗法化学(IHC)和原位杂交(FISH)来检测这些标记,这些(FISH)是建立,更快且具有成本效益的检测方法的。这些分子标志物以及临床病理预后参数可以最好地预测癌症复发和进展的预后。最后,作为分子标记物的激素受体和HER2具有主要的治疗意义,并且有能力参与未来的药物开发技术。版权所有ª2020年,重庆医科大学。Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。