Anderson, CR、Maughan, C. 和 Pimbert, MP (2019)。欧洲的变革性农业生态学学习:培养粮食主权的意识、技能和集体能力。农业与人类价值观,36 (3),531 – 547。https://doi.org/10.1007/s10460-018-9894-0 Arvanitis, KG 和 Symeonaki, EG (2020)。农业 4.0:创新智能技术在可持续农场管理中的作用。开放农业杂志,14 (1),130 – 135。https://doi.org/10.2174/ 1874331502014010130 Avaria, RWC (2020)。在数字农业辩论中寻找可持续性:系统转型的替代方法。 TEKNO-KULTURA:数字文化杂志和社会运动,17 (2), 225 – 238。Baret, PV (2017)。接受创新和向更可持续的食物系统过渡的途径。马铃薯研究,60 (3 – 4), 383 – 388。https://doi.org/10.1007/s11540-018-9384-1 Barkema, HW、Von Keyserlingk, MAG、Kastelic, JP、Lam, TJGM、Luby, C.、Roy, JP、LeBlanc, SJ、Keefe, GP 和 Kelton, DF (2015)。特邀评论:乳品行业的变化对乳牛健康和福利的影响。乳业科学杂志, 98 (11), 7426 – 7445。https://doi.org/10.3168/jds.2015-9377 Barnes, AP, Soto, I., Eory, V., Beck, B., Balafoutis, A., Sánchez, B., Vangeyte, J., Fountas, S., van der Wal, T., & G omez-Barbero, M. (2019)。探索精准农业技术的采用:对欧盟农民的跨区域研究。土地利用政策, 80, 163 – 174。https://doi.org/10.1016/j.landusepol.2018.10.004 Batterink, MH, Wubben, EFM, Klerkx, L., & Omta, SWF (O.) (2010)。协调创新网络:农业食品领域创新经纪人的案例。创业与区域发展,22 (1),47 – 76。https://doi.org/10.1080/08985620903220512 Battilani, A. (2015)。资源获取受限:挑战还是机遇?载于 M. Camara、A. Battilani 和 S. Colvine (Eds.),Acta Horticulturae(第 27 – 40 页)。(1081:国际园艺学会)。https://doi.org/10.17660/ActaHortic.2015.1081.1 BEATLES。(2023 年)。共同创造行为改变,实现气候智能型食品系统。< https://beatles-project.eu/concept-objectives/ >,已访问。
5。referênciasbibliográficasDean,R。等。分子植物病理学中的十大真菌病原体:前10个真菌病原体。分子植物病理学,第13卷,n。 4,第4页。 414–430,Maio 2012。Doyle,J.J。; Doyle,J。L.从新鲜组织中分离植物DNA。 重点,第12卷,第13-15页,1990年。 Fillinger,S。; Elad,Y。 (eds。)。 葡萄干 - 农业系统中的真菌,病原体及其管理。 CHAM:Springer International Publishing,2016年。 Garfinkel,A。R.葡萄干分类法的历史,系统发育学的兴起及其对物种识别的影响。 Phytopathology®,第111页,n。 3,第3页。 437–454,3月。 2021。 Giampieri,F。等。 草莓作为健康促进者:基于证据的审查。 食品与功能,第6卷,n。 5,p。 1386–1398,2015。 Kumari,S。等。 对肉豆蔻酸分离株中遗传和致病性变异性的分析。 微生物研究,第169页,n。 11,第1页。 862–872,11月。 2014。 Leroux,P。等。 氯蒂斯灰质性田间抗杀菌剂抗性的机制。 害虫管理科学,第58页,n。 9,第9页。 876–888,设置。 2002。 Messias,R。D。S.等。 与不同玉米品种的晶粒中高品质RNA分离。 制备生物化学和生物技术,第44页,n。 7,第7页。 697–707,3淘汰。 2014。 Wang,M。等。 双向交叉kingdom RNAi和外部RNA的真菌吸收植物保护。 自然植物,第2卷,n。 10,p。 16151,19集。Doyle,J.J。; Doyle,J。L.从新鲜组织中分离植物DNA。重点,第12卷,第13-15页,1990年。Fillinger,S。; Elad,Y。 (eds。)。 葡萄干 - 农业系统中的真菌,病原体及其管理。 CHAM:Springer International Publishing,2016年。 Garfinkel,A。R.葡萄干分类法的历史,系统发育学的兴起及其对物种识别的影响。 Phytopathology®,第111页,n。 3,第3页。 437–454,3月。 2021。 Giampieri,F。等。 草莓作为健康促进者:基于证据的审查。 食品与功能,第6卷,n。 5,p。 1386–1398,2015。 Kumari,S。等。 对肉豆蔻酸分离株中遗传和致病性变异性的分析。 微生物研究,第169页,n。 11,第1页。 862–872,11月。 2014。 Leroux,P。等。 氯蒂斯灰质性田间抗杀菌剂抗性的机制。 害虫管理科学,第58页,n。 9,第9页。 876–888,设置。 2002。 Messias,R。D。S.等。 与不同玉米品种的晶粒中高品质RNA分离。 制备生物化学和生物技术,第44页,n。 7,第7页。 697–707,3淘汰。 2014。 Wang,M。等。 双向交叉kingdom RNAi和外部RNA的真菌吸收植物保护。 自然植物,第2卷,n。 10,p。 16151,19集。Fillinger,S。; Elad,Y。(eds。)。葡萄干 - 农业系统中的真菌,病原体及其管理。CHAM:Springer International Publishing,2016年。 Garfinkel,A。R.葡萄干分类法的历史,系统发育学的兴起及其对物种识别的影响。 Phytopathology®,第111页,n。 3,第3页。 437–454,3月。 2021。 Giampieri,F。等。 草莓作为健康促进者:基于证据的审查。 食品与功能,第6卷,n。 5,p。 1386–1398,2015。 Kumari,S。等。 对肉豆蔻酸分离株中遗传和致病性变异性的分析。 微生物研究,第169页,n。 11,第1页。 862–872,11月。 2014。 Leroux,P。等。 氯蒂斯灰质性田间抗杀菌剂抗性的机制。 害虫管理科学,第58页,n。 9,第9页。 876–888,设置。 2002。 Messias,R。D。S.等。 与不同玉米品种的晶粒中高品质RNA分离。 制备生物化学和生物技术,第44页,n。 7,第7页。 697–707,3淘汰。 2014。 Wang,M。等。 双向交叉kingdom RNAi和外部RNA的真菌吸收植物保护。 自然植物,第2卷,n。 10,p。 16151,19集。CHAM:Springer International Publishing,2016年。Garfinkel,A。R.葡萄干分类法的历史,系统发育学的兴起及其对物种识别的影响。Phytopathology®,第111页,n。 3,第3页。 437–454,3月。2021。Giampieri,F。等。草莓作为健康促进者:基于证据的审查。食品与功能,第6卷,n。 5,p。 1386–1398,2015。Kumari,S。等。 对肉豆蔻酸分离株中遗传和致病性变异性的分析。 微生物研究,第169页,n。 11,第1页。 862–872,11月。 2014。 Leroux,P。等。 氯蒂斯灰质性田间抗杀菌剂抗性的机制。 害虫管理科学,第58页,n。 9,第9页。 876–888,设置。 2002。 Messias,R。D。S.等。 与不同玉米品种的晶粒中高品质RNA分离。 制备生物化学和生物技术,第44页,n。 7,第7页。 697–707,3淘汰。 2014。 Wang,M。等。 双向交叉kingdom RNAi和外部RNA的真菌吸收植物保护。 自然植物,第2卷,n。 10,p。 16151,19集。Kumari,S。等。对肉豆蔻酸分离株中遗传和致病性变异性的分析。微生物研究,第169页,n。 11,第1页。 862–872,11月。 2014。Leroux,P。等。氯蒂斯灰质性田间抗杀菌剂抗性的机制。害虫管理科学,第58页,n。 9,第9页。 876–888,设置。2002。Messias,R。D。S.等。与不同玉米品种的晶粒中高品质RNA分离。制备生物化学和生物技术,第44页,n。 7,第7页。 697–707,3淘汰。2014。Wang,M。等。 双向交叉kingdom RNAi和外部RNA的真菌吸收植物保护。 自然植物,第2卷,n。 10,p。 16151,19集。Wang,M。等。双向交叉kingdom RNAi和外部RNA的真菌吸收植物保护。自然植物,第2卷,n。 10,p。 16151,19集。2016。Wang,L。等。 在绿辣椒后果实中的辣椒粉的隔离和控制。 Scientia Horticulturae,第302页,第1页。 111159,以前。 2022。 Watanabe,M。等。 用珠磨削的快速有效的DNA提取方法可用于大量真菌DNA。 食品保护杂志,第73页,n。 6,第6页。 1077–1084,6月。 2010。 Weiberg,A。等。 真菌小RNA通过劫持宿主RNA干扰途径抑制植物免疫。 Science,第342节,n。 6154,p。 118–123,4淘汰。 2013。 Schenk,J。J.等。 “修改”的CTAB协议是什么? 表征对CTAB DNA提取方案的修改。 植物科学中的应用,第11卷,n。 3,第3页。 E11517,Maio2023。 Silva,M。N. D.fretrçãodednagenômicode tecidos foliares maduros deespéciesnativas do cerrado。 Revistaárvore,第34页,n。 6,第6页。 973–978,Dez。 2010。Wang,L。等。在绿辣椒后果实中的辣椒粉的隔离和控制。Scientia Horticulturae,第302页,第1页。 111159,以前。2022。Watanabe,M。等。 用珠磨削的快速有效的DNA提取方法可用于大量真菌DNA。 食品保护杂志,第73页,n。 6,第6页。 1077–1084,6月。 2010。 Weiberg,A。等。 真菌小RNA通过劫持宿主RNA干扰途径抑制植物免疫。 Science,第342节,n。 6154,p。 118–123,4淘汰。 2013。 Schenk,J。J.等。 “修改”的CTAB协议是什么? 表征对CTAB DNA提取方案的修改。 植物科学中的应用,第11卷,n。 3,第3页。 E11517,Maio2023。 Silva,M。N. D.fretrçãodednagenômicode tecidos foliares maduros deespéciesnativas do cerrado。 Revistaárvore,第34页,n。 6,第6页。 973–978,Dez。 2010。Watanabe,M。等。用珠磨削的快速有效的DNA提取方法可用于大量真菌DNA。食品保护杂志,第73页,n。 6,第6页。 1077–1084,6月。2010。Weiberg,A。等。真菌小RNA通过劫持宿主RNA干扰途径抑制植物免疫。Science,第342节,n。 6154,p。 118–123,4淘汰。 2013。 Schenk,J。J.等。 “修改”的CTAB协议是什么? 表征对CTAB DNA提取方案的修改。 植物科学中的应用,第11卷,n。 3,第3页。 E11517,Maio2023。 Silva,M。N. D.fretrçãodednagenômicode tecidos foliares maduros deespéciesnativas do cerrado。 Revistaárvore,第34页,n。 6,第6页。 973–978,Dez。 2010。Science,第342节,n。 6154,p。 118–123,4淘汰。2013。Schenk,J。J.等。 “修改”的CTAB协议是什么? 表征对CTAB DNA提取方案的修改。 植物科学中的应用,第11卷,n。 3,第3页。 E11517,Maio2023。 Silva,M。N. D.fretrçãodednagenômicode tecidos foliares maduros deespéciesnativas do cerrado。 Revistaárvore,第34页,n。 6,第6页。 973–978,Dez。 2010。Schenk,J。J.等。“修改”的CTAB协议是什么?表征对CTAB DNA提取方案的修改。植物科学中的应用,第11卷,n。 3,第3页。 E11517,Maio2023。Silva,M。N. D.fretrçãodednagenômicode tecidos foliares maduros deespéciesnativas do cerrado。Revistaárvore,第34页,n。 6,第6页。 973–978,Dez。2010。