三个社区的诞生正在征求一种采购来解决早期干预系统的财政稳定性。此RFP将引入负责计费医疗补助和商业保险的中央计费办公室(CBO)。为了应对这一挑战,幼儿期(OEC)的办公室正在提出这一RFP,以支持早期干预的签约提供者的业务以及整个康涅狄格州三个计划的出生稳定性。OEC对三个系统行动理论的诞生是,当父母,卫生保健提供者,三个合同提供者的出生以及当地教育机构的出生对早期干预措施和专业发展的目的有共同的了解,与适当的财政增强能力保持一致,以最大程度地提高收入并确保提供足够的提供者的能力,那么儿童及其家人就会增加。稳定的财政增强功能允许主要机构和三个计划的诞生,以确保支持该领域的家庭的人可以使用基于证据的做法。财政稳定使该系统能够充分帮助家庭,并允许三个合同提供者的出生在财务上可行。最终,通过此RFP创建的业务支持系统将保持系统的能力和财务稳定性,并确保与业务相关的资源和支持公平地适合于三个合同提供者社区。OEC将于2月3日星期一下午12:30举办一次预投标会议,以审查RFP的收到潜在受访者的问题。虽然这次会议不是强制性的,但我们强烈鼓励您参加。请注册会议:zoom.us/webinar/register/wn_-ylhsicfrh6zefbcsbzh7g##/regissmistation提案,将于2025年3月7日(星期五)到达2025年3月7日星期五,到美国东部时间下午5:00。我们致力于促进三个合同提供者经营的每个分娩的金融基础设施。我们期待与一个战略性一致的合作伙伴合作,他分享了我们致力于支持三个合同提供者的出生,以代表三个系统的出生来处理商业保险和医疗补助索赔。我们期待阅读这些提案,并希望你们中的许多人都会回应这一呼吁。真诚,
2025 年 1 月 27 日 – Cantor Colburn LLP 欣然宣布新增六名专业人员,以增强公司在各种复杂技术领域的专利法能力,包括聚合物、电池、材料工程、半导体、医疗设备、显示技术、有机化学、制药、生物技术、化学加工等。加入我们的有三名专利律师 – Summer Chu、Jennifer Lunn 博士和 Peter McFadden 博士,以及三名专利代理人 – Danielle L. Dougherty 博士、Naresh Ramireddy 博士和 Yong Tang 博士。六名专业人员中有五名拥有各自领域的博士学位。他们的综合专业知识将增强我们为客户提供服务的能力。这支才华横溢的专业团队为 Cantor Colburn 带来了各种各样的教育背景和专业经验。具体而言,这些经验包括涉及癌症研究、半导体、燃料电池、太阳能电池、纳米粒子、催化剂化学、增材制造、医疗器械、电池开发、先进材料、药物发现、遗传学和生物化学的工作。他们的知识产权法律经验包括担任专利代理人、专利律师、经验丰富的搜索专业人员、首席科学家和专利科学家。他们常驻我们位于哈特福德、亚特兰大和华盛顿特区的办公室。管理合伙人 Philmore H. Colburn II 强调了新专业人员的卓越能力和奉献精神,“我们很高兴欢迎这些熟练的律师和代理人加入我们的团队,以满足客户对卓越法律和技术专业知识的持续需求。他们在专利法的各个方面都拥有深厚的技术知识和经验,并带来了协作精神和以客户为中心的方法,这对我们的客户大有裨益。” Summer Chu 的业务专注于保护客户的知识产权和研发投资。Chu 女士在为客户提供专利战略和组合开发以及专利执行和防御战略方面的咨询方面拥有丰富的经验。尤其是,朱律师在美国联邦法院、专利审判与上诉委员会和国际贸易委员会的专利侵权诉讼方面拥有丰富的经验。她擅长起草和起诉美国和国际专利申请,
与编码基因类似,miRNA 由 RNA 聚合酶 II 从 miRNA/MIR 基因转录成长的初级转录本,称为初级/pri miRNA(图1)。此后,pri-miRNA 被 RNaseIII 样酶(称为 DICER-LIKE (DCL 1))与其他蛋白质一起切割成前体/前 miRNA。这些前 miRNA 进一步由 DCL1 加工成 20-24 个核苷酸长的 miRNA:miRNA 双链体。然后,双链体在 3' 端被 HUA 增强子 1 甲基化,并通过 EXPORTIN-5 输出到细胞质中。然后将双链体加载到含有 ARGONAUTE (AGO) 蛋白的 RNA 诱导沉默复合物 (RISC) 中。来自 miRNA:miRNA 双链中只有一条 RNA 链被加载到 RISC 上,而另一条链被小 RNA 降解核酸酶降解。最后,加载的 miRNA 将 RISC 靶向其互补的 mRNA,因此,根据其与目标 mRNA 的互补程度,它可能导致两种结果。如果 miRNA 与目标 mRNA 高度同源,则可能导致 mRNA 的位点特异性裂解,而与目标 mRNA 的弱碱基配对则导致翻译抑制(图1)。
摘要:肿瘤是全球最常见的死亡原因之一。欧洲每年新增 370 万例肿瘤病例,超过 190 万患者死亡(WHO 数据)。大多数研究领域都致力于开发新的治疗策略,以有效消除肿瘤、防止其缓解并避免或减少治疗的副作用。过去,通常使用经典的 2D 细胞培养或免疫缺陷动物模型来培养和在人类癌细胞系上测试药物。如今,人们对三维 (3D) 细胞培养的兴趣日益浓厚,这种方法与平面培养细胞有显著不同,既考虑了基因表达,也考虑了细胞间相互作用。各种证据表明,高致瘤性可能取决于小细胞群的出现,据指出,这是转移和复发的原因。这个群体被称为癌症干细胞 (CSC),暗示与正常干细胞有很多相似之处。CSC 是化疗失败以及多药耐药 (MDR) 的主要原因。 CSC 还可以通过细胞因子网络与炎症系统的巨噬细胞等其他细胞相互作用。3D 培养的一大优势是可以分离和研究被其环境包围的 CSC 群体。本文旨在总结已知的 3D 细胞培养,特别是在 CSC 研究领域,因为肿瘤环境对干细胞标志物表达及其发育非常重要。
从医学图像(尤其是 MRI 扫描)中对脑肿瘤进行分类对于及时诊断和治疗至关重要。深度学习模型的发展彻底改变了医学图像分析,使高精度的自动分类成为可能。然而,许多现有模型存在过度拟合、训练效率低下以及对新数据集的泛化能力差等问题。在这项工作中,我们引入了 Shree-L1,这是一种专为脑肿瘤分类而定制的动态卷积神经网络 (CNN) 架构。Shree-L1 结合了创新的降尺度和升尺度块,可有效提取复杂特征,同时通过 dropout 等正则化技术防止过度拟合。我们使用公开的脑肿瘤数据集证明了这种方法的有效性,为医学成像中的肿瘤分类提供了一种强大的解决方案。
感染后,人乳头瘤病毒 (HPV) 会操纵宿主细胞基因表达,以创造一个有利于有效和持续感染的环境。病毒诱导的宿主细胞转录组变化被认为是导致致癌的原因。在这里,我们通过 RNA 测序表明,致癌 HPV18 附加体在原代人类包皮角质形成细胞 (HFK) 中的复制会驱动宿主转录变化,这些变化在多个 HFK 供体之间是一致的。我们之前已经表明,HPV18 将宿主蛋白 CTCF 募集到病毒附加体中,以控制分化依赖性病毒转录程序。由于 CTCF 是宿主细胞转录的重要调节器,它通过协调表观遗传边界和长距离染色体相互作用,我们假设 HPV18 也可能操纵 CTCF 来促进宿主转录重编程。通过 ChIP-Seq 分析宿主细胞基因组中的 CTCF 结合情况,结果显示,虽然病毒不会改变 CTCF 结合位点的总数,但是有一部分 CTCF 结合位点要么富集要么缺乏 CTCF。许多这些改变的位点聚集在差异表达基因的调控元件内,包括抑制上皮细胞生长和侵袭的肿瘤抑制基因细胞粘附分子 1 (CADM1)。我们发现 HPV18 的建立会导致 CADM1 启动子和上游增强子处的 CTCF 结合降低。在没有 CpG 高甲基化的情况下,CTCF 结合的丧失与 CADM1 的表观遗传抑制同时发生,而包括转录调节因子 ZBTB16 在内的相邻基因则被激活。这些数据表明,在 HPV18 建立后,CADM1 基因座会发生拓扑重排。我们利用 4C-Seq(环状染色体确认捕获测序)测试了这一假设,并表明 HPV18 的建立导致
教师和研究人员之间的跨学科合作,为实现现实世界挑战的创新解决方案提供了创造。教师将通过学习使用适用于当前和未来项目的高级计算智能工具,软件和算法来增强其研究能力。将突出计算智能方面的最新发展,鼓励参与者将这些进步纳入他们的研究中,以解决复杂的问题。此外,该计划将为出版策略和授予提案写作提供宝贵的见解,并授权教师发表他们的发现并确保研究资金。交互式会话将确保使用计算智能工具的动手经验,从而有效地将理论概念与实际应用联系起来。
摘要 半导体量子点 (QDs) 作为高性能材料,在当代工业中发挥着重要作用,这主要是因为它们具有高光致发光量子产率、宽吸收特性和尺寸相关的光发射。使用 QDs 作为微光学应用的构建块来构建定义明确的微/纳米结构至关重要。然而,制造具有设计功能结构的稳定 QDs 一直是一个挑战。在这里,我们提出了一种在具有特定保护性能的混合介质中对所需 QDs 进行三维直接光刻的策略。丙烯酸酯功能化的混合前体通过超快激光诱导多光子吸收实现局部交联,实现超越衍射极限的亚 100 纳米分辨率。印刷的微/纳米结构具有高达 600 ◦ C 的热稳定性,可以转化为体积收缩的无机结构。由于 QDs 封装在密集的硅氧分子网络中,功能结构表现出良好的抗紫外线照射、腐蚀性溶液和高温稳定性。基于混合三维纳米光刻技术,可制备双色多层微/纳米结构,用于三维数据存储和光学信息加密。本研究为制备所需的量子点微/纳米结构提供了一种有效的策略,支持开发稳定的功能器件应用。
然而,目前对基于 TIGFET 的设计的评估依赖于对功率、性能和面积 (PPA) 的近似,而不是传统的基于布局的方法。为了对设计区域进行系统评估,我们在此介绍了一个公开可用的预测过程设计套件 (PDK),用于 10 纳米直径的硅纳米线 TIGFET 设备。这项工作包括一个 SPICE 模型和完整的定制物理设计文件,包括一份设计规则手册、一份设计规则检查和用于 Calibre® 的布局与原理图平台。我们通过实现基本逻辑门和全加器来验证设计规则,并将提取的指标与 FreePDK15nm TM PDK 进行比较。我们分别表明,在 XOR 门和 1 位全加器设计的情况下,面积减少了 26% 和 41%。通过差分功率分析研究支持此 PDK 在硬件安全优势方面的应用。
摘要 干细胞研究的进步和前景引发了许多特定的伦理问题。虽然生物学研究人员和生物技术创新者往往很难驾驭干细胞研究的伦理环境,但公众和其他相关人士(从伦理学家到政策制定者)也很难掌握一个朝多个方向发展的新兴领域的技术性。类器官是这些新的生物技术结构之一,目前正在引起生物伦理学的激烈争论。在本指南中,我们认为不同类型的类器官具有不同的新兴特性,具有不同的伦理含义。从一般特性到特定特性,我们从哲学和伦理的角度提出了类器官技术和其他相关生物技术的类型学。我们指出了相关的伦理问题,并试图传达正在进行的研究和新兴技术对象所特有的不确定性。