3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。 *相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。 缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。 在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。 我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。 我们在计算上筛选了跨越各种化学类别的12,000多种化合物。 对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。 值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。 其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。 患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。3爱丁堡大学生物科学学院,Max Born Crescent,Edinburgh,EH9 3BF,英国。*相应的作者:d.oyarzun@ed.ac.uk; n.carragher@ed.ac.uk摘要胶质母细胞瘤多形(GBM)是一种侵略性的原发性脑肿瘤,由于其复杂的病理和异质性,引起了重大治疗挑战。缺乏经过验证的分子靶标是发现新的治疗候选者的主要障碍,在二十年中,没有向患者提供新的有效GBM疗法。在这里,我们报告了针对GBM干细胞存活表型的化合物的鉴定。我们的方法采用机器学习(ML)的预测指标的细胞存活率,这些细胞存活在高通量,基于图像的,基于图像的表型筛选数据中,用于3,561种化合物,以多个浓度,跨六个异质,患者衍生的GBM干细胞系进行多个浓度。我们在计算上筛选了跨越各种化学类别的12,000多种化合物。对GBM干细胞系中ML识别的候选物的实验验证,导致了三种化合物对GBM表型的活性。值得注意的是,我们经过验证的HSP90抑制剂XL888之一,靶向消除所有六个GBM干细胞系,其IC50在纳莫尔范围内。其他两种化合物在具有不同细胞系敏感性的多个GBM细胞系中展示了广泛的活动,为将来的个性化医学运动提供了途径。患者的预后较差,治疗方案有限(通常是手术,然后进行化学放疗),导致抗药性的出现。我们的工作证明了在与ML串联串联中使用表型筛选的使用可以有效地识别具有很少已知分子靶标的高度异质指示中个性化处理的治疗铅。关键字:胶质母细胞瘤,人工智能,药物发现,机器学习简介胶质母细胞瘤多形(GBM)是人类成年人中最常见和最具侵略性的原发性脑肿瘤,其特征是遗传驱动因素的实质异质性和肿瘤微环境1-3。在过去20年中,新诊断的GBM患者的护理标准包括手术,替莫唑胺(TMZ)和电离辐射(IR),延长了12个月至15个月患者的总体生存期4,5。大规模的基因组分析增强了我们对GBM分子生物学的理解,后者支持
本书包含 300 多个量子力学问题及其解决方案,涵盖了研究生一年级物理课程中常见的主题。本书特别关注每个问题的表述,并提供详细而广泛的解决方案以帮助理解。这些问题涵盖了从基本练习到更具挑战性的应用和标准材料的扩展的一系列难度。学生需要批判性地思考,并结合以前或同时学习的物理和数学技巧来解决更具挑战性的问题。每章都以一个简短的理论部分开始,阐述正在研究的特定主题,为后续问题设定背景并激发其灵感。本书非常适合自学,或作为高年级本科生和研究生及其导师现有量子力学教科书的有益补充。
近年来,基于深度学习的目标检测取得了长足的进步。然而,由于域转移问题,将现成的检测器应用于看不见的域会导致性能大幅下降。为了解决这个问题,本文提出了一种新的由粗到细的特征自适应方法用于跨域目标检测。在粗粒度阶段,与文献中使用的粗糙的图像级或实例级特征对齐不同,采用注意机制提取前景区域,并通过在公共特征空间中多层对抗学习根据其边缘分布进行对齐。在细粒度阶段,我们通过最小化来自不同域但属于同一类别的全局原型的距离来进行前景的条件分布对齐。由于这种由粗到细的特征自适应,前景区域中的领域知识可以得到有效的迁移。在各种跨域检测场景中进行了大量的实验。结果是最先进的,证明了所提出方法的广泛适用性和有效性。
生物制剂在治疗免疫相关皮肤病中起积极而有效的作用。然而,许多其他与免疫相关的疾病也随着生物制剂治疗而表现出来。通过免疫相关的皮肤毒素是指在生物学治疗炎性弹药性皮肤病后的其他免疫介导的皮肤病(主要是牛皮癣和特应性皮炎)的新发作或加剧,主要是肿瘤性皮肤皮肤治疗(主要是牛皮癣和果皮炎),例如新的perso perso perso perso Inias(persias perso Inisias)(persopic Dermatias)广告处理。 常见的遗传背景和炎症途径是可能的发病机理。 面对矛盾的反应,需要将治疗的选择针对对两种疾病的有效疗法,例如Janus激酶(JAK)抑制剂。 Janus激酶和信号转导子和转录(JAK-STAT)途径的激活因素在炎症途径中起重要作用,并且近年来已广泛用于AD和PSO的治疗。 本文侧重于JAK抑制剂,例如Tofacitinib,Baritodinib,ruxolitinib,abrocitinib,upadacitinib和deucravacitinib,以探索治疗矛盾反应的可能应用。 讨论了常见的副作用,基线危险因素和JAK抑制剂的安全使用。是指在生物学治疗炎性弹药性皮肤病后的其他免疫介导的皮肤病(主要是牛皮癣和特应性皮炎)的新发作或加剧,主要是肿瘤性皮肤皮肤治疗(主要是牛皮癣和果皮炎),例如新的perso perso perso perso Inias(persias perso Inisias)(persopic Dermatias)广告处理。常见的遗传背景和炎症途径是可能的发病机理。面对矛盾的反应,需要将治疗的选择针对对两种疾病的有效疗法,例如Janus激酶(JAK)抑制剂。Janus激酶和信号转导子和转录(JAK-STAT)途径的激活因素在炎症途径中起重要作用,并且近年来已广泛用于AD和PSO的治疗。本文侧重于JAK抑制剂,例如Tofacitinib,Baritodinib,ruxolitinib,abrocitinib,upadacitinib和deucravacitinib,以探索治疗矛盾反应的可能应用。常见的副作用,基线危险因素和JAK抑制剂的安全使用。
今年发布的 NAEP 分数显示,COVID 对学生学习产生了巨大影响:阅读和数学成绩的下降幅度是实施测试 30 年来最大的。即使在疫情之前,NAEP 分数也落后了。为了让美国的教育系统重回正轨,我们邀请了来自不同团体的 40 位专家——从教育技术公司到慈善组织再到教师——来讨论可能的解决方案。该小组强调了教育的多学科和融合性质,教育领域涉及心理学、认知科学、社会学和经济学以及正在学习的特定领域(数学、生物学、化学等)。教育传统上是孤立的,往往抵制从技术到职业和工作性质变化等关键社会创新。这使得教育成为融合加速器的绝佳潜在轨道,它“建立在基础研究和发现的基础上,以加速解决方案对社会产生影响。”在构思了数据科学教育、中学数学和评估等关键领域的可交付成果后,该小组讨论了这些领域的交叉趋势。他们发现,支持教育融合至关重要,这将有助于让当今的学生成为明智的决策者、积极解决问题的人和自我导向的终身学习者。本报告提出了专家认为对改善教育机会至关重要的关键主题和必要的伙伴关系。然后,它研究了产生能够改变美国教育格局的可交付成果所需的关键学科和融合。可交付成果的主要未来方向、其智力价值和更广泛的社会影响:● 中学数学可交付成果侧重于提高学生的积极性、数学概念和技能的相关性、支持协作和基于项目的学习、优化和扩展反馈机制以及开发 AI 来响应学生的输入。这些创新将有助于揭示更多关于成就和机会差距以及其他在 STEM 领域对学生群体产生不同影响的机制。 ● 数据科学教育成果侧重于让学生掌握处理数据的程序技能,并支持教师及时对数据科学相关的评估提供反馈。这些成果的智力价值包括了解如何将数据科学教育融入主流课程——或将其作为一门独立的学科进行开发和教授(Engel,2017)——鉴于其跨学科性质。● 评估成果侧重于开发新的、越来越不引人注目的学生评估方式,包括游戏化等元素以及评估更广泛的技能(如自我调节和协作学习)。这些成果的智力价值包括更深入地理解学习过程,通过更有效、更少破坏性和更全面的评估产生更广泛的影响。
摘要:寻找新的机制解决方案以应对生物催化挑战是酶进化适应以及设计新催化剂的关键。最近人造物质被释放到环境中,为观察生物催化创新提供了动态试验场。用作杀虫剂的磷酸三酯最近才被引入环境中,而它们并没有天然对应物。为了应对这一挑战,酶已迅速进化以水解磷酸三酯,并趋向于相同的机制解决方案,即需要二价阳离子作为催化的辅助因子。相比之下,先前发现的宏基因组混杂水解酶 P91(乙酰胆碱酯酶的同源物)实现了由金属独立的 Cys-His-Asp 三联体介导的缓慢磷酸三酯水解。在这里,我们通过对 P91 进行定向进化来探究这种新催化基序的可进化性。通过将聚焦库方法与液滴微流体的超高通量相结合,我们仅通过两轮进化就将 P91 的活性提高了约 360 倍(达到 ak cat / KM ≈ 7 × 10 5 M − 1 s − 1 ),可与自然进化的金属依赖性磷酸三酯酶的催化效率相媲美。与其同源物乙酰胆碱酯酶不同,P91 不会遭受自杀抑制;相反,快速的去磷酸化速率使共价加合物的形成而不是水解速率成为限制因素。定向进化改进了这一步骤,中间体的形成速度提高了 2 个数量级。将聚焦的组合库与液滴微流体的超高通量相结合,可以用于识别和增强自然界中尚未达到高效率的机制策略,从而产生具有新型催化机制的替代试剂。■ 简介
生物学入侵正在影响全球生物多样性,生态系统和社会经济。海洋非土著物种(MNIS)可以通过人类活动(例如海上运输和粗心丢弃水族馆物种)引入。尽管为防止引入MNI的努力做出了重大努力,但仍会出现事件,包括紫s,甲壳类动物,沿海,anthozoans,bryozoans,bryozoans,sponges,acraalgae,acroalgae,seagrasses and Mangroves(Alidoost Salimi Salimi等,2021)。一旦MNI在接收者地区建立,控制和消除它们就成为一项艰巨的任务。早期对MNIS的认识可以提高早期反应的有效性,特别是在引入阶段,这对于减少MNIS的影响至关重要。因此,必须在成功建立新栖息地并对当地生物多样性构成威胁之前,制定可靠且具有成本效益的策略来对MNI的早期发现进行早期检测。公众在海洋保护中扮演着重要角色(EARP和LICONTI,2020年),例如检测和监视Acanthaster SPP的爆发和监测。(Dumas等,2020),以及管理侵入性狮子弯曲势力(Clements等,2021)。为了监视MNIS的存在,已采取行动来帮助公众熟悉并有效地认识这些物种,例如使用手表清单和指南。然而,由于海洋物种的生物多样性,准确识别标本
本文的目的是通过深度增强学习对小鼠大脑的基底神经节功能进行建模。众所周知,基底神经节可以提供带有皮质直接影响运动功能的反馈回路。基底神经节中的大多数神经元都是抑制性或多巴胺能。这类似于加强学习的奖励体系。由于几乎不可能对基底神经节的整个应用进行建模,因此本文将重点介绍在迷宫的应用程序中对基底神经节进行建模,其中鼠标在迷宫中,并且需要找到“一块奶酪”(奖励)。这种现实世界的测试通常是在小鼠上进行的,并很好地展示了如何通过增强学习,通过奖励模仿学习[1]。在这种情况下,将在模拟动作方面抽象出其他相关领域(如感觉皮层和运动皮层)的功能和建模。总体而言,通过增强学习对基础神经节的关键功能将是其在行动选择和学习中的用途。
结直肠癌(CRC)以其高转移潜力而闻名,仍然是癌症相关死亡的主要原因。本综述强调了免疫反应在CRC转移中的关键作用,重点是免疫细胞与肿瘤微环境之间的相互作用。我们探索免疫细胞如何通过细胞因子,趋化因子和生长因子有助于CRC转移级联反应,从而强调了肿瘤微环境在塑造免疫反应中的作用。该评论涉及CRC的免疫逃避策略,尤其是对PD-1和CTLA-4等检查点抑制剂的上调,突显了它们作为治疗靶标的潜力。我们还检查了先进的免疫疗法,包括检查点抑制剂和免疫细胞移植,以改变免疫反应并增强CRC转移的治疗结果。总体而言,我们的分析提供了对免疫分子与肿瘤环境之间相互作用的见解,对于开发新的治疗方法以控制CRC转移并改善患者预后至关重要,并特别着重于克服免疫逃避,这是该特殊问题的关键方面。
免疫系统中主要的组织相容性复合物(MHC)I类和II类分子的关键作用已得到很好的确定。本研究旨在开发一种新型的机器学习框架,用于通过MHC I类和II类分子预测抗原肽表现。通过整合大规模质谱数据和其他相关数据类型,我们基于深度学习提供了预测模型ONMIMHC。我们使用独立的测试集对其性能进行了严格的评估,ONMIMHC在MHC-I任务中的PR-AUC得分为0.854,Top20%-PPV为0.934,这表现优于现有方法。同样,在MHC-II预测的域中,我们的模型ONMIMHC的PR-AUC得分为0.606,TOP20%-PPV为0.690,表现出优于其他基线方法。这些结果证明了我们模型ONMIMHC在准确预测MHC-I和MHC-II分子之间的肽MHC结合后的优势。凭借其出色的准确性和预测能力,我们的模型不仅在一般的预测任务中出色,而且在预测新抗原针对特定癌症类型的新抗原方面也取得了显着的结果。特别是对于子宫菌群子宫内膜癌(UCEC),我们的模型成功地预测了新抗原,对普通人类等位基因具有很高的结合概率。这一发现对于开发针对UCEC的个性化肿瘤疫苗非常重要。
