bach2调节T细胞谱系状态以克服由补品汽车信号驱动的功能障碍,由Tien-Ching Chang 1,2,Amanda Heake 1,2,John Lattin 2,3,Amanda Barrett 1,2,Amanda Barrett 1,2,Jack H. Landmann 1,2,John M. Warrington 1,2,John M. Warrington 1,2,Yangdon tenzin 1,2,Sadia 1,2,Sadia 1,2,2,junda sadaia 1,2 1,2 , Julie Ritchey 1,2 , Mehmet Emrah Selli 1,2 , Yu-Sung Hsu 1,2 , Haorui Song 4 , Avery Horn 1,2 , Evan W. Weber 5 , Thomas J. Wandless 6 , John F. DiPersio 1,2 , Jeremy Chase Crawford 7,8 , Paul G. Thomas 7,8 , Stephen Gottschalk 9 , Nathan Singh 1,2* 1肿瘤学系,华盛顿大学医学院,圣路易斯密苏里州圣路易斯大学医学院2遗传和蜂窝免疫疗法中心,华盛顿大学医学院,圣路易斯密苏里州医学系,华盛顿大学医学系,圣路易斯大学医学院,密苏里州圣路易斯大学医学院5宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州6 6化学与系统生物学系,斯坦福大学,斯坦福大学,加利福尼亚州斯坦福大学7宿主互动局,孟菲斯圣裘德儿童研究医院,田纳西州圣裘德儿童研究医院8田纳西州孟菲斯医院 *通讯作者:nathan.singh@wustl.edu
多年来积累的有关细胞分化机制的数据推动了细胞重编程的发展——这是生物技术的一个全新策略。将体细胞恢复到多能状态甚至将一种体细胞类型直接转换为另一种体细胞类型(转分化)的能力已成为细胞生物学的一项重要突破,因为它广泛应用于从基础研究到再生医学和遗传疾病治疗。早期的重编程技术,如体细胞核移植 (SCNT) 和细胞融合,大约 60 年前首次实施,证实了体细胞的分化状态是可以逆转的(Briggs 和 King,1952 年;Köhler 和 Milstein,1975 年)。尽管这些技术适用于多种应用(Köhler 和 Milstein,1975 年;Lee 等人,2016 年),但对于大多数现代重编程目的而言,它们仍然过于随机和不可控。重编程的下一个级别是在体细胞中外源性过度表达转录因子 (TF)。Takahashi 和 Yamanaka (2006) 在他们著名的将体细胞重编程为诱导多能干细胞 (iPSC) 的实验中使用了这种方法。TF 的过度表达仍然是改变细胞命运的最常见和最有效的方法。如今,存在多种技术可以实现这种改变。其中之一可能是 CRISPR/Cas9 — 一种基于细菌抗病毒防御系统的基因工程工具(Hsu 等人,2014 年)。该系统经过多次修改,不仅允许 DNA 编辑,还可以通过激活、抑制甚至染色质重塑等不同方式调节基因表达。
目录简介 3 Allsopp, D.N.、Beautement, P.、Bradshaw, J.M.、Durfee, E.H.、Kirton, M.、 5 Knoblock, C.A.、Suri, N.、Tate, A. 和 Thompson, C.W. “联盟代理实验:国际联盟环境中的多代理合作” Bala, J.、Pachowicz, P. 和 Witham, R.A. “通过进化计算和 3-D 可视化支持联盟行动 21 目标运动探索” Barber, K.S.和 Martin, C. “联盟中决策者的自主性” 22 Bevinakoppa, S.、Kumar, D.K.、MacGovern, J.、Narayan, K. 和 Hicks, R. “基于知识的联盟规划和运营在医疗应用中” Desimone, R. 和 Charles, D. “面向情报分析和收集管理的本体论” 26 Doran, J. “基于代理的环境联盟形成建模” 33 Edwards, G.、Kettler, B.、Olin, K. 和 Tsurutani, B. “语义对象网上的代理:联盟行动的信息管理” Fletcher, M. “JACK:构建全息联盟的系统” 49 Fouse, S.、Delgado, R. 和 Beaton, B. “C-CINC21:21 世纪联盟指挥官的指挥与控制” 61世纪:先进概念技术演示 (ACTD) 报告” Hsu, E. “以群体为导向的联盟框架” 62 Jelinek, J. “军事行动的模型预测风险控制” 73 King, G., Heeringa, B., Westbrook, D., Catalano, J. 和 Cohen, P. 84 “失败模型” Klusch, M. 和 Gerber, A. “动态联盟形成问题” 91
* Emilio Bisetti和Alminas ˇZaldokas在香港科学技术大学(HKUST)。吉曼,她在香港大学(HKU)。电子邮件:bisetti@ust.hk; gshe@hku.hk; alminas@ust.hk。We thank Bo Bian, Ben Charoen- wong, Jess Cornaggia, Nickolay Gantchev, Po-Hsuan Hsu, Stefan Lewellen, Huaizhou Li, Hao Liang, Clemens Otto, Nora Pankratz, Christoph Schiller, Johan Sulaeman, Roberto Tubaldi, and Qiaoqiao Zhu, as well as conference participants at the 2023年EFA会议,2023年AARHUS关于公司融资战略互动的研讨会,2023年Gerzensee的CEPR ESSFM,2023年2023年ABFER会议,中国贝克尔·弗里德曼经济研究所,BIS 2023 2023年2023年中国的机会和挑战” NTHU可持续金融与经济学研讨会,以及宾夕法尼亚州立大学,曼海姆大学,新加坡国家大学,新加坡管理大学,Hec-Hkust可持续金融研讨会,HKUST,HKUST,HKHAI University of Shanghai University of Fanance and Emanance,Sun Yat-Sen Universion,Riga for Aga for Agrith foriga foriga foriga for Igrith foriga foriga for Igrith fornith fornith for Igrith fornith for Igrith fornith formia for Igrith,Bisetti和ˇ Zaldokas非常感谢HKUST新兴市场研究研究所的财政支持。我们的分析部分基于来自Nielsen Consumer LLC的数据以及通过芝加哥大学商学院KILTS营销数据中心的Nielseniq数据集提供的营销数据库。从Nielseniq数据中得出的结论是研究人员的结论,并且不反映Nielseniq的观点。nielseniq不承担任何责任,没有任何作用,也不参与分析和准备此处报告的结果。
Natalie Andzik,特殊及早期教育 Abul Azad,工程技术 Stephanie Baker,特殊及早期教育 Sheila Barrett,健康研究 Shannon Becker,世界语言与文化 Akosua Birago Poku,教育技术、研究与评估 MJ Blaschak,辅助医疗与交流障碍 Melissa Burlingame,环境研究 Arielle Cassiday,政治学 Yessenia Chavez,神经科学与行为 Shicheng Chen,健康研究 W. Catherine Cheung,辅助医疗与交流障碍 Peter Chomentowski,运动机能学与体育教育 Wonock Chung,运动机能学与体育教育 Gibson Cima,戏剧与舞蹈 Finley Cowlishaw,艺术史 Apoorva Dabholkar,生物科学 Purushothaman Damodaran,工业与系统工程 Amy Daniel,护理 Alisha Diggs,生物医学工程 Mary Lynn Doherty,音乐 Alissa Droog,研究与教学 Dr. T. Ajewole Duckett,黑人研究 Amanda Durik,心理学 Melissa Fickling,咨询与高等教育 Larissa Garcia,大学图书馆 Kim Gatz,传播学 Rachel Gordon,健康研究 Scot Grayburn,生物科学 Liping Guo,工程技术 Arnold Hampel,生物化学名誉教授 Kendall Hampton,公共管理 Anne Hanley,历史 Michael Henson,生物科学 ASM Shahadat Hossain,计算机科学 Pi-Sui Hsu,教育技术、研究与评估 Aliyan Rizwan Hussain,会计 Farah Ishaq,运动机能学与体育教育 Darius Jackson,拉美裔和拉丁美洲研究中心 Priyanka Jha,咨询与高等教育 Dorcas Joseph,物理学 Stacy Kelly,特殊与早期教育 Colin Kuehl,政治科学与环境研究 Michael Kushnick,联合健康和交流障碍 Xiaohui (Sophie) Li,家庭与消费者科学学院
自由、南方守望和伊拉克自由 (OIF),飞行超过 2,000 个战斗小时和 483 架次。让中队的 10 架老旧 F-14D 随时准备执行所有任务的挑战得到了水手和指挥官的奉献和努力。每飞行一小时需要花费近 60 个维护工时,但努力得到了回报,OIF 期间的出动完成率为 98%,投掷了 320,000 磅弹药,武器系统可靠性达到 100%。“2003 年 2 月 28 日,在南方守望期间,由指挥官 Dave Burnham 和中尉 Justin Hsu 驾驶的 111 号飞机在战斗中从一架 F-14D 上投掷了第一枚联合直接攻击弹药 (JDAM)。赏金猎人与加利福尼亚州中国湖海军基地的第 9 和第 31 空中测试和评估中队以及马里兰州帕塔克森特河海军航空站的人员携手合作,确保 F-14D 部队能够在伊拉克自由行动前及时拥有 JDAM 能力。随后,所有三个部署的 F-14D 中队都在伊拉克战争期间使用了 JDAM。5 月,VF-2 的飞行结束了赏金猎人 30 年的 F-14 飞行。当中队返回弗吉尼亚州奥西欧纳海军航空站进行飞行时,由海军少校 Kurt Frankenberger 和指挥官驾驶的 100 号飞机。Doug Denneny 遇到了一架他们将在几个月后驾驶的 F/A-18F。指挥官。超级大黄蜂舰队战备中队 (FRS) VFA-122 的 Keith Taylor 和 Mark Adamshick 驾驶飞机欢迎他们。2003 年 7 月 1 日,VF-2 正式成为 VFA-2,并开始向 F/A-18F 超级大黄蜂过渡训练。
自由、南方守望和伊拉克自由 (OIF) 行动中,飞行了 2,000 多个战斗小时和 483 架次。让中队的 10 架老旧 F-14D 随时准备执行所有任务的挑战,得到了水兵和指挥官的奉献和努力。每飞行一小时需要花费近 60 个维护工时,但努力得到了回报,OIF 期间的出动完成率为 98%,投掷了 320,000 磅弹药,武器系统可靠性达到 100%。2003 年 2 月 28 日,在南方守望行动期间,由指挥官 Dave Burnham 和中尉 Justin Hsu 驾驶的 111 号飞机在战斗中从一架 F-14D 上投掷了第一枚联合直接攻击弹药 (JDAM)。赏金猎人与位于加利福尼亚州中国湖海军基地的第 9 和第 31 空中测试和评估中队以及马里兰州帕塔克森特河海军航空站的人员密切合作,确保 F-14D 部队能够在伊拉克自由行动前拥有 JDAM 能力。随后,所有三个部署的 F-14D 中队都在伊拉克战争期间使用了 JDAM。5 月,VF-2 的飞行结束了赏金猎人 30 年的 F-14 飞行生涯。当该中队返回弗吉尼亚州奥西欧纳海军航空站进行飞行时,由海军少校库尔特·弗兰肯伯格和道格·丹尼尼指挥官驾驶的 100 号飞机遇到了他们将在几个月后驾驶的一架 F/A-18F。指挥官。超级大黄蜂舰队战备中队 (FRS) VFA-122 的 Keith Taylor 和 Mark Adamshick 驾驶飞机迎接他们。2003 年 7 月 1 日,VF-2 正式成为 VFA-2,并开始向 F/A-18F 超级大黄蜂过渡训练。
Gonterman F.(2023)。一项系统的审查评估了主要抑郁症中对经颅磁刺激反应的与患者相关的预测指标。神经精神病和治疗,19,565–577。Mishra J等(2022)。新兴的神经治疗技术。Loscalzo J,&Fauci A和Kasper D和Hauser S,&Longo D和Jameson J(编辑。),哈里森的内科原理,21e。McGraw Hill。 nguyen B等(2019)。 患者治疗脑损伤。 mitra r(ed。 ),康复医学原则。 McGraw Hill。 Raj K.S.等(2023)。 情绪障碍(抑郁和躁狂症)。 Papadakis M.A.和McPhee S.J.和Rabow M.W.和McQuaid K.R.(编辑。 ),当前的医学诊断和治疗2023。 McGraw Hill。 Raj Y等人(2019年)。 抑郁症。 Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑 ),行为医学:临床实践指南,5E。 McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。McGraw Hill。nguyen B等(2019)。患者治疗脑损伤。mitra r(ed。),康复医学原则。McGraw Hill。 Raj K.S.等(2023)。 情绪障碍(抑郁和躁狂症)。 Papadakis M.A.和McPhee S.J.和Rabow M.W.和McQuaid K.R.(编辑。 ),当前的医学诊断和治疗2023。 McGraw Hill。 Raj Y等人(2019年)。 抑郁症。 Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑 ),行为医学:临床实践指南,5E。 McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。McGraw Hill。Raj K.S.等(2023)。 情绪障碍(抑郁和躁狂症)。 Papadakis M.A.和McPhee S.J.和Rabow M.W.和McQuaid K.R.(编辑。 ),当前的医学诊断和治疗2023。 McGraw Hill。 Raj Y等人(2019年)。 抑郁症。 Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑 ),行为医学:临床实践指南,5E。 McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。Raj K.S.等(2023)。情绪障碍(抑郁和躁狂症)。Papadakis M.A.和McPhee S.J.和Rabow M.W.和McQuaid K.R.(编辑。),当前的医学诊断和治疗2023。McGraw Hill。 Raj Y等人(2019年)。 抑郁症。 Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑 ),行为医学:临床实践指南,5E。 McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。McGraw Hill。Raj Y等人(2019年)。 抑郁症。 Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑 ),行为医学:临床实践指南,5E。 McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。Raj Y等人(2019年)。抑郁症。Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑),行为医学:临床实践指南,5E。McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。McGraw Hill。S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。S.E.Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。Hal等人(2014年)。第515-518页。Vida,R。G.等。(2023)。在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。BMC精神病学,23(1),545。Hsu,C。W.等。(2024)。神经科学和生物行为评论,156,105483。Jin,Y。等。 (2024)。 (2024)。Jin,Y。等。(2024)。(2024)。比较了对躁郁症抑郁症治疗的不同非侵入性脑刺激干预措施:随机对照试验的网络荟萃分析。神经调节对阿尔茨海默氏病患者冷漠的功效和安全性:随机对照试验的系统评价和荟萃分析。精神病学杂志,171,17-24。Liu,G。等。 重复经颅磁刺激的影响以及认知训练对阿尔茨海默氏病患者认知功能的影响:系统评价和荟萃分析。 衰老神经科学的边界,15,1254523。 Pagali,S。R.等。 (2024)。 经颅磁刺激对轻度认知障碍,阿尔茨海默氏病,阿尔茨海默氏病与疾病相关的痴呆症和其他认知障碍的疗效和安全性:系统评价和荟萃分析。 国际心理学,1-49。 XIU,H。等。 (2024)。 高频重复的经颅磁刺激(HF-RTMS)对老年人在轻度至中度的阿尔茨海默氏病中的全球认知功能:系统评价和荟萃分析。 神经科学:意大利神经学会和意大利临床神经生理学学会的官方杂志,45(1),13-25。 Huang,P。等。 (2024)。 对阿尔茨海默氏病的三种脑刺激技术的功效分析:反复经颅磁刺激,经颅直流电流刺激和深脑刺激的荟萃分析。 神经疗法的专家评论,24(1),117–127。Liu,G。等。重复经颅磁刺激的影响以及认知训练对阿尔茨海默氏病患者认知功能的影响:系统评价和荟萃分析。衰老神经科学的边界,15,1254523。Pagali,S。R.等。(2024)。经颅磁刺激对轻度认知障碍,阿尔茨海默氏病,阿尔茨海默氏病与疾病相关的痴呆症和其他认知障碍的疗效和安全性:系统评价和荟萃分析。国际心理学,1-49。XIU,H。等。 (2024)。 高频重复的经颅磁刺激(HF-RTMS)对老年人在轻度至中度的阿尔茨海默氏病中的全球认知功能:系统评价和荟萃分析。 神经科学:意大利神经学会和意大利临床神经生理学学会的官方杂志,45(1),13-25。 Huang,P。等。 (2024)。 对阿尔茨海默氏病的三种脑刺激技术的功效分析:反复经颅磁刺激,经颅直流电流刺激和深脑刺激的荟萃分析。 神经疗法的专家评论,24(1),117–127。XIU,H。等。(2024)。高频重复的经颅磁刺激(HF-RTMS)对老年人在轻度至中度的阿尔茨海默氏病中的全球认知功能:系统评价和荟萃分析。神经科学:意大利神经学会和意大利临床神经生理学学会的官方杂志,45(1),13-25。Huang,P。等。 (2024)。 对阿尔茨海默氏病的三种脑刺激技术的功效分析:反复经颅磁刺激,经颅直流电流刺激和深脑刺激的荟萃分析。 神经疗法的专家评论,24(1),117–127。Huang,P。等。(2024)。对阿尔茨海默氏病的三种脑刺激技术的功效分析:反复经颅磁刺激,经颅直流电流刺激和深脑刺激的荟萃分析。神经疗法的专家评论,24(1),117–127。Liu,Z。等。 (2024)。 经颅磁刺激对帕金森氏病冻结步态的影响:对随机对照试验的系统评价和荟萃分析。 衰老神经科学中的边界,16,130485。 Wang,Z。等。 (2024)。 低频RTMS对癫痫病的时间效应和患者认知功能的改善:系统评价和荟萃分析。 癫痫研究,199,107277。 Galimberti,A等人(2024)。 RTM和TDCS治疗慢性TBI症状的有效性:系统的综述和荟萃分析。 神经心理学与生物精神病学的进展,128,110863。 Hu,Y。等(2024)。 非侵入性脑刺激对脑损伤患者意识障碍的影响:对随机对照试验的系统综述和荟萃分析。 大脑研究,1822,148633。 Knorst,G。R. S.等(2024)。 经颅磁刺激在幻影肢体疼痛的治疗中:系统评价。 估算巨麦味transcraniana no tratamento da do do membro Fantasma:UmaRevisãoSistemática。 arquivos de neuro-psiquiatria,82(1),1-10。 Bormann,N。L.等(2024)。 系统的审查和荟萃分析:结合经颅磁刺激或直接电流刺激与药物治疗物质使用障碍的药物疗法。 美国成瘾期刊。 Mehta,D。等人(2024)。 对药物使用障碍的神经调节疗法的系统综述和荟萃分析。Liu,Z。等。(2024)。经颅磁刺激对帕金森氏病冻结步态的影响:对随机对照试验的系统评价和荟萃分析。衰老神经科学中的边界,16,130485。Wang,Z。等。 (2024)。 低频RTMS对癫痫病的时间效应和患者认知功能的改善:系统评价和荟萃分析。 癫痫研究,199,107277。 Galimberti,A等人(2024)。 RTM和TDCS治疗慢性TBI症状的有效性:系统的综述和荟萃分析。 神经心理学与生物精神病学的进展,128,110863。 Hu,Y。等(2024)。 非侵入性脑刺激对脑损伤患者意识障碍的影响:对随机对照试验的系统综述和荟萃分析。 大脑研究,1822,148633。 Knorst,G。R. S.等(2024)。 经颅磁刺激在幻影肢体疼痛的治疗中:系统评价。 估算巨麦味transcraniana no tratamento da do do membro Fantasma:UmaRevisãoSistemática。 arquivos de neuro-psiquiatria,82(1),1-10。 Bormann,N。L.等(2024)。 系统的审查和荟萃分析:结合经颅磁刺激或直接电流刺激与药物治疗物质使用障碍的药物疗法。 美国成瘾期刊。 Mehta,D。等人(2024)。 对药物使用障碍的神经调节疗法的系统综述和荟萃分析。Wang,Z。等。(2024)。低频RTMS对癫痫病的时间效应和患者认知功能的改善:系统评价和荟萃分析。癫痫研究,199,107277。Galimberti,A等人(2024)。RTM和TDCS治疗慢性TBI症状的有效性:系统的综述和荟萃分析。 神经心理学与生物精神病学的进展,128,110863。 Hu,Y。等(2024)。 非侵入性脑刺激对脑损伤患者意识障碍的影响:对随机对照试验的系统综述和荟萃分析。 大脑研究,1822,148633。 Knorst,G。R. S.等(2024)。 经颅磁刺激在幻影肢体疼痛的治疗中:系统评价。 估算巨麦味transcraniana no tratamento da do do membro Fantasma:UmaRevisãoSistemática。 arquivos de neuro-psiquiatria,82(1),1-10。 Bormann,N。L.等(2024)。 系统的审查和荟萃分析:结合经颅磁刺激或直接电流刺激与药物治疗物质使用障碍的药物疗法。 美国成瘾期刊。 Mehta,D。等人(2024)。 对药物使用障碍的神经调节疗法的系统综述和荟萃分析。RTM和TDCS治疗慢性TBI症状的有效性:系统的综述和荟萃分析。神经心理学与生物精神病学的进展,128,110863。Hu,Y。等(2024)。非侵入性脑刺激对脑损伤患者意识障碍的影响:对随机对照试验的系统综述和荟萃分析。大脑研究,1822,148633。Knorst,G。R. S.等(2024)。经颅磁刺激在幻影肢体疼痛的治疗中:系统评价。估算巨麦味transcraniana no tratamento da do do membro Fantasma:UmaRevisãoSistemática。arquivos de neuro-psiquiatria,82(1),1-10。Bormann,N。L.等(2024)。系统的审查和荟萃分析:结合经颅磁刺激或直接电流刺激与药物治疗物质使用障碍的药物疗法。美国成瘾期刊。Mehta,D。等人(2024)。对药物使用障碍的神经调节疗法的系统综述和荟萃分析。神经心理药理学:美国神经心理药理学学院的官方出版,49(4),649–680。Qiu,Y。T等。 (2024)。 在小脑共济失调中重复经颅磁刺激的功效和安全性:系统评价和荟萃分析。 小脑(英国伦敦),23(1),243–254。 li,X。等。 (2024)。 非侵入性脑刺激对与精神分裂症相关的认知障碍认知功能的功效和安全性:系统评价和荟萃分析。 精神病学杂志,170,174–186.Huang,W。等。 (2024)。 非侵入性脑刺激在治疗精神分裂症中的一般心理病理学症状中的功效:一项荟萃分析。 综合神经科学杂志,23(1),7。 Stephens,E.,Dhanasekara,C.S.,Montalvan,V.,Zhang,B.,Bassett,A.,Hall,R.,Rodaniche,A. 重复经颅磁刺激对慢性每日头痛预防的实用性:系统评价和荟萃分析。 当前的疼痛和头痛报告。 Yan,M。等(2024)。 非侵入性脑刺激对冲程后认知障碍的比较功效:网络荟萃分析。 衰老临床和实验研究,36(1),37。 Tang,Z。等。 (2024)。 RTM对中风后运动恢复的影响:fMRI研究的系统评价。 Alfredo,L。C.等(2024)。 大脑和行为,14(1),E3370。 Han,C。等人(2024)。Qiu,Y。T等。(2024)。在小脑共济失调中重复经颅磁刺激的功效和安全性:系统评价和荟萃分析。小脑(英国伦敦),23(1),243–254。li,X。等。(2024)。非侵入性脑刺激对与精神分裂症相关的认知障碍认知功能的功效和安全性:系统评价和荟萃分析。精神病学杂志,170,174–186.Huang,W。等。(2024)。非侵入性脑刺激在治疗精神分裂症中的一般心理病理学症状中的功效:一项荟萃分析。综合神经科学杂志,23(1),7。Stephens,E.,Dhanasekara,C.S.,Montalvan,V.,Zhang,B.,Bassett,A.,Hall,R.,Rodaniche,A.重复经颅磁刺激对慢性每日头痛预防的实用性:系统评价和荟萃分析。当前的疼痛和头痛报告。Yan,M。等(2024)。 非侵入性脑刺激对冲程后认知障碍的比较功效:网络荟萃分析。 衰老临床和实验研究,36(1),37。 Tang,Z。等。 (2024)。 RTM对中风后运动恢复的影响:fMRI研究的系统评价。 Alfredo,L。C.等(2024)。 大脑和行为,14(1),E3370。 Han,C。等人(2024)。Yan,M。等(2024)。非侵入性脑刺激对冲程后认知障碍的比较功效:网络荟萃分析。衰老临床和实验研究,36(1),37。Tang,Z。等。(2024)。RTM对中风后运动恢复的影响:fMRI研究的系统评价。Alfredo,L。C.等(2024)。 大脑和行为,14(1),E3370。 Han,C。等人(2024)。Alfredo,L。C.等(2024)。大脑和行为,14(1),E3370。Han,C。等人(2024)。神经科学:意大利神经学会和意大利临床神经生理学学会的官方杂志,45(3),897–909。中风患者的不同非侵入性脑刺激治疗可用于上肢恢复的组合:系统评价。非侵入性脑刺激技术的有效性和安全性结合了中风后的口感培训:系统评价和荟萃分析。医学,103(2),E36880。Tangjade,A。等。 (2024)。 非侵入性神经调节结合康复疗法可改善中风患者的平衡和步态速度:系统评价和网络荟萃分析。 美国物理医学与康复杂志。 tan,Y。等。 (2024)。 对反应后失语症中重复转颅磁刺激的最佳因素研究的文献综述和荟萃分析。 欧洲医学研究杂志,29(1),18。https://lifequalitytms.com/what-is-tmTangjade,A。等。(2024)。非侵入性神经调节结合康复疗法可改善中风患者的平衡和步态速度:系统评价和网络荟萃分析。美国物理医学与康复杂志。tan,Y。等。(2024)。对反应后失语症中重复转颅磁刺激的最佳因素研究的文献综述和荟萃分析。欧洲医学研究杂志,29(1),18。https://lifequalitytms.com/what-is-tm
1. 通过 UCSC 基因组浏览器 ( https://genome.ucsc.edu/ ) 可获得用于设计两个 gRNA 的目标 DNA 序列。a. 选择感兴趣的基因组版本。在我们的例子中,使用的是“人类 GRCh38/hg38”。b. 根据已知的倒位断点 1 的位置,标记断点前 100-150 bp 到断点后 100–150 bp 范围内的基因组区域。例如,如果断点 1 位于 chr3:2,920,305,则在 UCSC 基因组浏览器搜索框中输入“chr3:2,920,205–2,920,405”以标记所需的染色体区域,然后单击“Go”。c. 在 UCSC 基因组浏览器工具栏上选择“查看”,然后单击“DNA”选项。d.在新窗口中,单击“获取 DNA”以获得准确的 DNA 序列。这是使用 CRISPOR 算法设计 gRNA 引物所需的序列(见下面的步骤 2a)。e. 对倒位的断点 2 重复步骤 1a-1d。2. 要设计 gRNA,请使用 CRISPOR 算法(http://crispor.tefor.net/):a. 输入从步骤 1d 获得的断点 1 的 DNA 序列。确保参考基因组与 UCSC 浏览器(步骤 1a)中使用的基因组相匹配,然后选择可通过转染载体编码的 Cas9 酶类型识别的 Protospacer Adjacent Motif (PAM)。如果转染载体表达 SpCas9,则选择 20 bp-NGG PAM 格式。单击“提交”以获得针对模板 DNA 的候选 gRNA 序列。b. CRISPOR 算法默认按特异性从高到低对候选 gRNA 序列进行排序,因为这是关键参数。从新页面上出现的候选 gRNA 列表中,选择具有最高麻省理工学院 (MIT) 和切割频率确定 (CFD) 特异性得分的指导序列(Doench 等人,2016 年;Hsu 等人,2013 年;Tycko 等人,2019 年)。这些分数根据以下方面评估候选 gRNA
马松就职于耶鲁大学和美国国家经济研究局。撰写这篇论文让我不断回想起撰写一篇独立论文的喜悦和痛苦。我要感谢 Itay Goldstein(编辑)和两位匿名审稿人,他们的有益评论极大地改善了这篇论文,他们的耐心让我能够仔细修改这篇论文。我要感谢我的合著者和众多同事一直以来的支持,他们的评论和讨论帮助我多年来形成了对这个主题的思考。对于详细的评论和讨论,我感谢 Nick Barberis、Shai Bernstein(评论员)、Gilles Chemla(评论员)、Wesley Cohen、Michael Ewens、Laurent Fresard、Stefano Giglio、Paul Goldsmith-Pinkham、Po-Hsuan Hsu、Allen Hu、Theis Jensen、Bryan Kelly、Leonid Kogan、Ernest Liu、Yueran Ma、Matt Marx、Stavros Panageas、Bruno Pellegrino(评论员)、Lawrence Schmidt(评论员)、Peter Schott、Bryan Seegmiller(评论员)、Merih Sevilir(评论员)、Kelly Shue、Janis Skrastins、Kaushik Vasudevan、Ting Xu(评论员)和 Alex Zentefis。我还要感谢 AFA、Bilkent、BlackRock、Bocconi、CKGSB、ESADE、FIRS(布达佩斯)、FOM 年度会议(达特茅斯)、GSU CEAR 会议、哈佛大学、伊利诺伊大学、伦敦政治经济学院、卢加诺、密歇根州立大学、NBER 暑期学院(宏观经济学和生产力)、北京大学、玛丽女王学院、中国人民大学、SFS Cavalcade(北卡罗来纳大学)、SMU、图卢兹经济学院、杜兰大学、肯塔基大学金融会议、德克萨斯大学达拉斯分校、沃里克、威斯康星大学、耶鲁大学(经济学)的研讨会参与者。Xugan Chen 提供了出色的研究协助。所有错误都是我自己的。请将信件寄至耶鲁管理学院的 Song Ma,地址:165 Whitney Ave, New Haven, CT 06511。电子邮件:song.ma@yale.edu。