1 暨南大学医学院公共卫生与预防医学系,广州,中国 2 暨南大学国际学院,广州,中国 3 南安普顿大学社会科学学院,南安普顿,英国 4 香港理工大学应用数学系,香港,香港 5 河南理工大学计算机科学与技术学院,河南,中国 6 北京师范大学(珠海)应用数学学院,珠海,中国 7 布莱根妇女医院妇产科,马萨诸塞州波士顿,美国 8 哈佛大学医学院麻省总医院基因组医学中心,马萨诸塞州波士顿,美国 9 伦敦帝国理工学院公共卫生学院流行病学与生物统计学系,伦敦,英国 10 香港大学公共卫生学院,香港,香港 * 这些作者的贡献相同
随着科技与时代的发展,新媒体技术与互动装置艺术的发展也慢慢走入了我们观众的视野。它简直就是“无声的艺术”。公众不再像传统那样“隐退”,而是参与其中,与艺术家一起畅游在艺术的世界里。本文旨在研究人工智能与无线网络通讯在互动装置艺术中的应用。通过各种通讯设备的优化,各种算法的不断进步,加强我们互动装置艺术之间的沟通与联系。本文提出,随着人工智能与无线网络通讯的加入,艺术家与观众之间的互动可能会更加有趣,让我们的生活更加丰富多彩。本文的实验结果表明,在进行无线网络通信时,加入人工智能的智能算法的通信延迟率比不加入人工智能的智能算法低很多,说明它们能够更好的将信息传递到控制端。当受到外界影响时,无线网络通信的误码率会上升,但是加入人工智能算法在他的影响范围内,他的误码率上升明显没有那么高。在无线网络通信过程中,改进后的算法在能耗、通信延迟、误码率等方面肯定要优于未改进的算法。通过信号的增强、通信设备材料的选择,这些都是在不断进步,在这方面也在不断探索。与其他算法相比,ML算法的定位精度提升了70%、65%、30%左右。增加传输信号的节点数量,可以大大减少节点间的跳数,相应减少跳距误差,相应减少距离估算误差,提高定位精度。可以更快解决互动装置艺术的技术壁垒。
在医疗保健领域实施人工智能 (AI) 的想法越来越受欢迎,尤其是在决策和诊断领域。这是因为 AI 在速度和准确性方面都胜过人类。例如,Scott Mayer McKinney 及其同事展示了一个 AI 系统,它在预测乳腺癌方面的表现优于六名医生,并且该系统可以将第二位读者的工作量减少 88% (1)。如果这种表现表明 AI 在医疗保健领域的潜力,那么广泛的应用可能会彻底改变诊断和决策。对于 AI,没有统一的定义,每个人都可以可靠地同意,但通常有两三个高级区别来理解这些类型的技术。第一种是专为特定目的而构建的反应系统,有时称为“狭义”或“弱”AI。第二种是“通用”系统,它们能够在数据集上进行训练并自行学习(有时这些系统被归入“狭义”类别)。最后一种系统称为通用人工智能或“强”AI,目前完全是理论上的。这些系统可以复制自主的人类智能(2)。以下是公众可能熟悉的这些不同类型系统的一些示例:Stockfish(国际象棋游戏系统)、IBM 的 Watson(为 Jeopardy 构建,但现已应用于医学)和 HAL(2001:太空漫游中的流氓计算机助手)。在本文中,我重点介绍“通用”AI。然而,尽管“通用”AI 具有潜力,但它尚未广泛应用于医疗决策,至少在实验环境或创新医院环境之外。相反,该领域的大多数人工智能或多或少都属于“狭义”类别,因为它们被用作诊断工具,而不是决策者。我打算研究三种可用于医疗保健的高级“通用”人工智能类别:不透明系统(有时通俗地称为“黑匣子”),可解释的人工智能(有时通俗地称为“白匣子”)和半透明系统(“灰匣子”)。不透明系统是用户无法访问系统用于实现输出的底层过程的系统。这些通常被认为是高度准确的,但以牺牲问责制为代价(3)。可解释的人工智能是分配给那些允许用户清楚地解释行为、预测和影响变量的系统的一个类别。这些都是透明且可信赖的,但通常功能不足以做预测或模式匹配以外的更多事情。最后,半透明的“灰盒”是一个较少讨论的类别,它捕获了介于不透明和完全透明之间的系统。尽管存在这种中间类别,但辩论往往将半透明系统排除在讨论之外,而是在透明或不透明系统之间提出二分法选择。灰色系统的引入将讨论从二分法转变为一系列潜在工具。
背景:误诊、乱收费、排队、诊所等待时间长等是全球医疗行业长期存在的现象。这些因素可能导致患者对临床医生误诊的焦虑。然而,随着大数据在生物医学和医疗保健界的使用日益增长,人工智能 (Al) 诊断技术的性能正在提高,可以帮助避免医疗实践错误,包括在当前 COVID-19 的情况下。目的:本研究旨在在中国 COVID-19 疫情的背景下,从人工智能诊断与临床医生的不同角度可视化和衡量患者的异质偏好。我们还旨在说明离散选择实验 (DCE) 潜在类别的不同决策因素,以及人工智能技术在 SARS-CoV-2 大流行期间及未来判断和管理中的应用前景。方法:DCE 方法是本文应用的主要分析方法。我们假设了诊断方法、门诊等候时间、诊断时间、准确率、诊断后随访、诊断费用等不同维度的属性,并形成问卷。利用 DCE 问卷收集的数据,应用 Sawtooth 软件对数据集构建了广义多项逻辑 (GMNL) 模型、混合逻辑模型和潜在类别模型。此外,我们计算了变量的系数、标准误差、P 值和优势比 (OR),并形成效用报告以呈现属性的重要性和加权百分比。结果:无论临床医生的描述如何,共有 55.8% 的受访者 (767 人中的 428 人) 选择了 AI 诊断。在 GMNL 模型中,我们发现人们最喜欢 100% 的准确率 (OR 4.548, 95% CI 4.048-5.110, P <.001)。对于潜在类别模型,最容易接受的模型由 3 个潜在类别的受访者组成。影响最大、百分比权重最高的属性是诊断的准确性(总体为 39.29%)和费用(总体为 21.69%),尤其是对诊断“准确性”属性的偏好,该属性在各个类别中保持不变。对于第 1 类和第 3 类,人们更喜欢 AI + 临床医生的方法(第 1 类:OR 1.247,95% CI 1.036-1.463,P <.001;第 3 类:OR 1.958,95% CI
1 暨南大学医学院公共卫生与预防医学系,广州,中国 2 中山大学肿瘤防治中心,广州,中国 3 暨南大学信息科学与技术学院,广州,中国 4 暨南大学国际学院,广州,中国 5 中山大学国际关系学院,广州,中国 6 暨南大学新闻与传播学院,广州,中国 7 格罗宁根大学经济与商学院,格罗宁根,荷兰 8 布莱根妇女医院妇产科,波士顿,美国 9 哈佛大学医学院麻省总医院基因组医学中心,波士顿,美国 10 香港中文大学妇产科,香港,香港 11 香港大学公共卫生学院,香港,香港 12 香港中文大学流行病学与公共卫生系环境与健康多学科合作研究中心英国伦敦帝国理工学院圣玛丽校区公共卫生学院生物统计学专业 * 这些作者的贡献相同
1 波美拉尼亚医科大学 (PMU) 生物化学科学系,70-204 什切青,波兰;koulaou@yahoo.co.uk 2 西里西亚医科大学心脏病学和结构性心脏病科,40-551 卡托维兹,波兰;tomasz.jadczyk@gmail.com 3 布尔诺圣安妮大学医院国际临床研究中心,656 91 布尔诺,捷克共和国 4 色萨利大学计算机科学和生物医学信息学系,40500 拉米亚,希腊; diakovidis@uth.gr 5 波美拉尼亚医科大学(PMU)社会医学与公共卫生系,70-204 Szczecin,波兰 6 OUH Svendborg Sygehus 医学系,5700 Svendborg,丹麦 7 奥登斯大学医院外科研究部,5000 Odense,丹麦 8 南丹麦大学(SDU)临床研究系,5000 Odense,丹麦 9 心脏病学研究与科学进步,UVA Research,多伦多,ON L3R 3Z3,加拿大;marc.bisnaire@uvaresearch.com 10 先天性心脏病学术中心,6500 HB Nijmegen,荷兰; dafnithess@yahoo.com 11 Amalia 儿童医院,Radboud 大学医学中心,6525 GA Nijmegen,荷兰 * 通讯地址:akoulaouzidis@hotmail.com
目的:本文旨在调查满意度和重要性,以便适当评估基于AI的服务质量评估。对人工智能音箱的用户进行重要性和满意度分析,并得出服务策略。设计/方法/方法:本研究对韩国使用人工智能音箱的消费者进行了调查。调查是在线进行的,样本总数为200个。发现:在本研究中,通过针对人工智能音箱用户进行总体重要性-满意度分析,得出了有意义的结果。在此基础上,为人工智能服务的每个质量项目制定了维护策略、改进策略和强化策略。通过分析性别特征,得出了适合男性和女性的服务策略。研究的局限性/含义:需要根据品牌等不同标准进行额外分析,得出广泛的服务策略。未来,除了人工智能音箱之外,还需要研究扩展到基于人工智能的各种服务。原创性/价值:这些研究结果将有助于为基于人工智能的各种服务制定适当的策略。
摘要:人工智能 (AI) 是一种强大的技术,具有多种功能,如今在所有行业中都开始显现出来。然而,与其他行业相比,人工智能在建筑行业的普及程度相当有限。此外,尽管人工智能是建筑环境研究的热门话题,但研究建筑行业人工智能采用水平低的原因的综述研究有限。本研究旨在通过确定人工智能的采用挑战以及为建筑行业提供的机遇来缩小这一差距。为了实现这一目标,该研究采用了 PRISMA 协议的系统文献综述方法。此外,文献的系统综述侧重于建筑项目生命周期的规划、设计和施工阶段。审查结果表明:(a) 人工智能在规划阶段特别有益,因为建筑项目的成功取决于准确的事件、风险和成本预测;(b) 采用人工智能的主要机会是通过使用大数据分析和改进工作流程来减少花在重复任务上的时间; (c) 将人工智能融入建筑工地的最大挑战是该行业的碎片化性质,这导致了数据获取和保留的问题。研究结果为建筑行业的各方提供了有关人工智能适应性的机会和挑战的信息,并有助于提高市场对人工智能实践的接受度。
摘要 在全球化的世界中,中小型制造企业(制造业 SME)面临着跟上全球竞争的挑战。尽管人工智能被认为具有从根本上改变整个市场、行业和一般商业活动的潜力,但问题仍然是中小企业如何有效和高效地在其运营中实施人工智能,从而建立潜在的(服务)商业模式。本文的目的是揭示这些系统的创新潜力,并指导中小企业如何使用它们。通过这些资源可以更有效地利用,并可以创建新的商业模式。人工智能很少使用的原因有很多,本文旨在寻求解决方案。结果是一个社会技术框架,允许制造业中小企业为自己建立基于人工智能的(服务)商业模式。
摘要:目的:技术举措现已融入广泛的商业领域。本文的目的是探讨人工智能系统通过顾客偏好和行业基准的中介对企业家决策的可能影响。设计/方法/方法:这是一项非实证的文献综述和概念模型的开发。在主要学术数据库(如 Emerald 在线期刊、Taylor and Francis 在线期刊、JSTOR 在线期刊、Elsevier 在线期刊、IEEE Xplore 和开放存取期刊目录 (DOAJ))中搜索了专注于人工智能 (AI)、企业家决策、顾客偏好、行业基准和员工参与度的论文。总共有 25 篇文章符合预定义标准并被使用。结果:该研究提出,人工智能系统可以从企业家的角度促进更好的决策。此外,研究表明,员工作为利益相关者,可以通过参与来调节人工智能系统与企业家更好决策之间的关系。此外,研究表明,客户偏好和行业基准可以调节人工智能系统与企业家更好的决策之间的关系。研究的局限性/含义:本研究假设 ICT 环境完美,以保证人工智能系统的顺利运行。然而,情况可能并非总是如此。这项研究没有考虑企业家在 ICT 使用和采用方面的个人倾向。实际意义:本研究提出,企业家决策在人工智能系统的环境中得到丰富,并辅以客户偏好、行业基准和员工参与。这一发现为企业家提供了一种可能的技术工具,以便做出更好的决策,凸显了人工智能系统提供的无限选择。社会影响:在商业决策过程中引入人工智能会带来许多社会问题,这些问题与机器对人类和社会的影响有关。本文提出了如何在不破坏社会的情况下使用这项新技术。原创性/价值:这个概念框架是企业家发展的宝贵组织范围。此外,这项研究通过人工智能系统为企业家发展做出了宝贵的贡献。