限制性片段。为了制备微克量的 Hin 375、Hin 550 和 Hae 790(见图 1),将含有示踪量 lambda [32p]_ DNA(2 X 106 cpm)的 5 mg 纯化 lambda DNA 用 Hin(7)或 Hae(6)消化,乙醇沉淀,重悬于 500 ul DNA 缓冲液(5 mM NaCi、10 mM Tris-HCl,pH 7.4、1 mM EDTA)中,在含有 TBE(1)缓冲液的 3.5% 聚丙烯酰胺凝胶(6 mm X 20 cm X 40 cm)上以 320 V 电泳 23 小时。通过放射自显影定位含有适当限制性片段的凝胶部分,切除,并通过苯酚提取去除 DNA(10)。如前所述,从含有 32P 的 DNA 中分离出高比活度标记的限制性片段(2)。通过聚丙烯酰胺凝胶电泳确定每个片段的链长(1、2)。
摘要。朦胧的图像带来了一个具有挑战性的问题,由于信息丢失和颜色失真而遭受。当前的基于深度学习的去悬式方法通过增加网络深度来增强性能,但会导致大量参数开销。同时,标准卷积层集中在低频细节上,通常会说出高频信息,这阻碍了模糊图像中提出的先前信息的有效利用。在本文中,我们提出了TCL-NET,这是一个轻巧的飞行网络,该网络强调了频域特征。我们的网络首先包含一个用于提取高频和低频内形式的所谓层,该层是针对原始模糊图像的快速变压器专门设计的。同时,我们设计了一个频率域信息融合模块,该模块将高频和低频信息与后续卷积层的卷积网络作品集成在一起。此外,为了更好地利用原始图像的空间信息,我们引入了一个多角度注意模块。使用上述设计,我们的网络以仅0.48MB的总参数大小实现了出色的性能,与其他最先进的轻量级网络相比,参数的数量级降低了。
Methods: This paper aims at the problem of target detection of Yunnan Xiaomila under complex background environment, in order to reduce the impact caused by the small color gradient changes between xiaomila and background and the unclear feature information, an improved PAE-YOLO model is proposed, which combines the EMA attention mechanism and DCNv3 deformable convolution is integrated into the YOLOv8 model, which improves the model ' s feature extraction capability and小米在复杂环境中的推理速度,并实现了轻巧的模型。首先,EMA注意机制与Yolov8网络中的C2F模块结合使用。C2F模块可以很好地从输入图像中提取本地特征,而EMA注意机制可以控制全局关系。两者相互补充,从而增强了模型的表达能力;同时,在骨干网络和头网络中,引入了DCNV3卷积模块,该模块可以根据输入特征映射自适应地调整采样位置,从而有助于针对不同尺度和轻量级网络的目标目标更强的功能捕获功能。它还使用深度摄像头来估计小米的姿势,同时分析和优化不同的遮挡情况。通过消融实验,模型比较实验和态度估计实验验证了所提出的方法的有效性。
本文所包含的信息基于Repsol Quimica的当前知识和经验,并且仅凭指导才能真诚地呈现。尽管在包含本文包含的信息时宣布Quimica最勤奋,但考虑到几个和不同的因素可能影响产品的处理,应用或使用,但转换器应在每种情况下都应对产品进行转换以及最终使用的情况。Repsol Quimica警告说,此信息可能会经历差异或改进;因此,Repsol Quimica没有义务在本文档中反映它们,也没有将它们传达给可以访问它的任何人。此外,这些读者应该意识到,某些产品可能受到知识产权的保护。©Repsol Quimica,S.A。2024。保留所有权利。
摘要。针对 COVID-19 等流行病的生物医学仪器和管理平台正在迅速采用支持物联网的医疗设备 (IoMT)。量子密钥分发 (QKD) 也被认为是应用顶级互联网战略的基本原理、工具、方法和思想,特别是在医疗保健和医疗领域。然而,使用 QKD 的高效端到端验证系统解决了协议的安全问题并简化了整个流程。因此,尽管成本可能会增加和出现错误的可能性,但必须实施一种新系统,使数据传输顺畅而不损害其完整性。当存在额外的传感器和设备并且需要更多能量来处理它们时,可以使用更有效的算法来降低功耗。
抽象的智能移动性和自动驾驶汽车(AV),必须非常精确地了解环境,以保证可靠的决策,并能够将公路部门获得的结果扩展到铁路等其他领域。为此,我们基于Yolov5引入了一个新的单阶段单眼3D对象检测卷积神经网络(CNN),该卷积神经网络(CNN)致力于公路和铁路环境的智能移动性应用。要执行3D参数回归,我们用混合锚盒替换了Yolov5的锚点。我们的方法有不同的模型大小,例如yolov5:小,中和大。我们提出的新模型已针对实时嵌入DED约束(轻巧,速度和准确性)进行了优化,该模型利用了被分裂注意的改进(SA)卷积所带来的改进(称为小型分裂注意模型(SMALL-SA)。为了验证我们的CNN模型,我们还通过利用视频游戏Grand Theft Auto V(GTAV)来引入一个新的虚拟数据集,以针对道路和铁路环境。我们在Kitti和我们自己的GTAV数据集上提供了不同模型的广泛结果。通过我们的结果,我们证明了我们的方法是最快的3D对象检测,其准确性结果接近Kitti Road数据集上的最新方法。我们进一步证明,GTAV虚拟数据集上的预训练过程提高了实际数据集(例如Kitti)的准确性,从而使我们的方法比最先进的方法获得了更高的准确性,该方法具有16.16%的3D平均均衡性精度,而硬CAR检测的推理时间为11.1 MS/rtx 3080 gpu的推理时间为11.1 s/simage。
摘要物联网(IoT)节点由收集环境数据的传感器组成,然后使用周围的节点和网关进行数据交换。网络安全攻击对任何物联网网络中正在传输的数据安全构成威胁。加密原始图被广泛采用以应对这些威胁;但是,实质性的计算要求限制了它们在物联网生态系统中的适用性。此外,每个物联网节点都随区域和吞吐量(TP)要求而变化,因此要求实现加密/解密过程。为了解决这些问题,这项工作通过采用环路折叠,循环独立且完全展开的体系结构来实现NIST轻巧的加密标准Ascon,Ascon,Ascon。完全展开的体系结构可以达到最高的TP,但以更高的面积利用为代价。通过较低的因素展开会导致较低的区域实施,从而探索了设计空间,以应对设计区域和TP性能之间的权衡。实施结果表明,对于环路折叠的结构,Ascon-128和Ascon-128a需要36.7k µm 2和38.5k µm 2芯片面积,而其全持续不经气的实施则需要277.1k µm 2和306.6k µm 2。拟议的实施策略可以调整回合的数量,以适应物联网生态系统的各种要求。还进行了具有开源45 nm PDK库的实现,以增强结果的概括和可重复性。
摘要 - 该论文引入了针对资源约束物联网(IoT)环境量身定制的轻巧,有效的键合功能,利用了Parabola Chaotic Map的混乱属性。通过将混沌系统的固有不可预测性与简化的加密设计相结合,提出的哈希功能可确保可靠的安全性和低计算开销。通过基于SRAM初始值将其与物理不封次函数(PUF)集成来进一步增强该函数,该功能可作为设备特异性键的安全且耐篡改的来源。对ESP32微控制器的实验验证证明了该函数对输入变化,特殊统计随机性以及对加密攻击的抗性的高度敏感性,包括碰撞和差分分析。在不同条件下,在关键产生中,平均比重变化的概率接近理想的50%和100%的可靠性,该系统解决了关键的物联网安全挑战,例如克隆,重播攻击和篡改。这项工作贡献了一种新颖的解决方案,该解决方案结合了混乱理论和基于硬件的安全性,以推动物联网应用程序的安全,高效和可扩展的身份验证机制。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。