周期性的桁架晶体材料,尤其是当与当前的添加剂制造技术结合使用时,引起了轻质材料工程的关注。作为基本立方桁架家族的成员,简单的桁架晶格沿主要方向具有最高的良好和强度,并且在承载载荷机械超材料中起着重要作用。高的各向异性机械性能和对屈曲载荷和剪切负荷的低阻力限制了其在能量吸收中的使用。在这里,我们提出了一类简单的封闭管晶格,具有有限的负载方向依赖性以及高机械性能和不规则的稳定后产物后反应。通过在微观上直接激光写作使其复杂结构的制造成为可能。实验和模拟表明,无论负载方向如何,弹性模量和简单封闭管状晶格的屈服强度都比简单立方体晶格的晶格明显大。在0.1的相对密度下,与桁架晶格相比,闭合的管状晶格可以分别吸收沿方向[100]和[110]的能量的4.45倍和6.14倍。平均标准化的Young的模量和屈服强度分别比最杰出的壳质超材料的质量大28%和53%。如此出色的机械性能使其成为用于承载和吸收能量的应用的潜在候选者。
38,567 3,206 0.490 0.841 0.093 0.297 MEGNET 0.436 0.818 0.138 -0.603 CGCNN+P 39,500 2,563 0.392 0.786 0,113 0.0 Bowsr 1.964 0.300 0.712 0.118 0.151 0.684 0.122 0.055 Voronoi RF38,567 3,206 0.490 0.841 0.093 0.297 MEGNET 0.436 0.818 0.138 -0.603 CGCNN+P 39,500 2,563 0.392 0.786 0,113 0.0 Bowsr 1.964 0.300 0.712 0.118 0.151 0.684 0.122 0.055 Voronoi RF
通常,交通流量模拟器分为两个主要类别:显微镜和宏观。前者专注于详细的单个车辆行为,而后者则侧重于大规模(例如城市规模)交通的集体行为。介观交通模拟器有时分为宏观的交通模拟器是两者的混合物。尽管他们在某种程度上描述了个人车辆行为,但其主要目的是模拟大规模流量的集体行为。中镜模拟器对于建模大规模的交通管理和操作特别有用,例如拥塞定价,乘车共享和自动化的车队管理,这些天数越来越突出。几个显微镜交通模拟器被发表为开源软件,例如Sumo(Lopez等,2018)。据作者所知,介质和宏观模拟器的可用性是有限的。
摘要 - 我们介绍了Point-LN,这是一种针对有效的3D点云分类设计的新型轻量级框架。点-LN整合了必需的非参数组件 - 最远的点采样(FPS),K-Nearest邻居(K-NN)和非可学习的位置编码 - 具有流线的可学习分类器,可以显着增强分类准确性,同时维持最小参数脚部。这种混合架构可确保较低的计算成本和快速推理速度,从而使Point-LN非常适合实时和资源受限的应用程序。在包括ModelNet40和ScanObjectnn在内的基准数据集的全面评估表明,与最先进的方法相比,Point-LN在提供出色的效率的同时,达到了竞争性能。这些结果将点ln建立为一种可靠的可扩展解决方案,用于各种点云分类任务,突出了其在各种计算机视觉应用中广泛采用的潜力。有关更多详细信息,请参见以下代码:https://github.com/asalarpour/point_ln。索引术语 - 3D点云分类,轻量级框架,非参数位置编码,机器学习,计算机视觉
背景和目标:深度学习技巧极大地推动了面部图像的种族分类进步。尽管取得了这些进步,但许多现有方法依赖于复杂的模型,这些模型需要大量的计算成本并表现出缓慢的处理速度。本研究旨在通过利用转移学习以及结合了基于注意力的学习的改进的有效网络模型来介绍一种有效,强大的种族分类方法。方法:在这项研究中,有效的网络被用作基本模型,应用转移学习和注意机制来增强其在种族分类任务中的功效。有效NET的分类器组件在战略上进行了修改,以最大程度地减少参数计数,从而在不损害分类精度的情况下提高处理速度。为了解决数据集不平衡,我们实施了广泛的数据增强和随机的过采样技术。修改模型经过严格培训和在全面的数据集上进行了评估,并通过准确性,精度,召回和F1得分指标进行了评估。结果:修改后的有效网络模型表现出显着的分类精度,同时显着降低了UTK-FACE数据集的计算需求。具体来说,该模型的准确度为88.19%,反映了基本模型的增强2%。此外,它证明记忆消耗和参数计数减少了9-14%。此外,提出的方法增强了培训样本少约50%的班级测试准确性约5%。实时评估显示,处理速度的速度比基本模型快14%,并且达到了最高的F1得分结果,这强调了其对实际应用的有效性。结论:本研究提出了一个基于改进的有效网络体系结构的高效种族分类模型,该模型利用转移学习和基于注意力的学习来实现最先进的表现。所提出的方法不仅持有高精度,还可以确保快速处理速度,使其非常适合实时应用。调查结果表明,这种轻巧的模型可以有效地与更复杂和计算密集的最新方法相抗衡,从而为实践种族分类提供了宝贵的资产。
摘要。资源受限的设备,例如无线传感器和物联网(IoT)设备在我们的数字生态系统中已变得无处不在。这些设备生成并处理我们数字数据的主要部分。但是,由于我们现有的公钥加密方案的量子计算机即将发生威胁以及在物联网设备上可用的有限资源,因此设计适合这些设备的轻量级量化后加密(PQC)方案非常重要。在这项工作中,我们使用基于错误的PQC方案探索了学习的设计空间,以设计适用于资源约束设备的轻巧键合并机制(KEM)。我们对不同的设计元素进行了严格且广泛的分析和评估,例如多项式大小,场模结构,还原算法以及基于LWE的KEM的秘密和错误分布。我们的探索导致了轻巧的PQC-KEM Rudraksh的提议,而没有损害安全性。我们的方案提供了针对所选密文攻击(CCA)的安全性,该攻击(CCA)具有100个以上的核心SVP后量子后安全性,属于NIST级I安全类别(至少提供AES-128的安全性)。我们还展示了如何将Ascon用于基于晶格的KEM中的轻质伪随机数生成和哈希功能,而不是广泛使用的keccak用于轻量级设计。我们的FPGA结果表明,Rudraksh目前需要类似安全性的PQC KEM之间的最小面积。与最先进的面积优化的Kyber实施相比,我们的Rudraksh实施对面积的需求提高了3倍,可以在高thoughtup Kyber的频率上以63%-76%的频率运行,并且与Time-Araea-AraeApoptuct-time-Araeapoptuct-time-aftrapuctiage 〜2×2×compact compact的实施相比,
摘要。资源受限的设备,例如无线传感器和物联网(IoT)设备在我们的数字生态系统中已变得无处不在。这些设备生成并处理我们数字数据的主要部分。但是,由于我们现有的公钥加密方案的量子计算机即将发生威胁以及在物联网设备上可用的有限资源,因此设计适合这些设备的轻量级量化后加密(PQC)方案非常重要。在这项工作中,我们使用基于错误的PQC方案探索了学习的设计空间,以设计适用于资源约束设备的轻巧键合并机制(KEM)。我们对不同的设计元素进行了严格且广泛的分析和评估,例如多项式大小,场模结构,还原算法以及基于LWE的KEM的秘密和错误分布。我们的探索导致了轻巧的PQC-KEM Rudraksh的提议,而没有损害安全性。我们的方案提供了针对所选密文攻击(CCA)的安全性,该攻击(CCA)具有100个以上的核心SVP后量子后安全性,属于NIST级I安全类别(至少提供AES-128的安全性)。我们还展示了如何将Ascon用于基于晶格的KEM中的轻质伪随机数生成和哈希功能,而不是广泛使用的keccak用于轻量级设计。我们的FPGA结果表明,Rudraksh目前需要类似安全性的PQC KEM之间的最小面积。与最先进的面积优化的Kyber实施相比,我们的Rudraksh实施对面积的需求提高了3倍,可以在高thoughtup Kyber的频率上以63%-76%的频率运行,并且与Time-Araea-AraeApoptuct-time-Araeapoptuct-time-aftrapuctiage 〜2×2×compact compact的实施相比,
摘要 — 最近,忆阻器在各种应用中受到了广泛关注。即使是电阻式存储器件 (RRAM) 的一些主要缺点(例如可变性),也已成为以物理不可克隆功能 (PUF) 形式实现硬件安全性的有吸引力的特性。尽管文献中已经出现了几种基于 RRAM 的 PUF,但它们仍然存在与可靠性、可重构性和大量集成成本相关的一些问题。本文介绍了一种新型轻量级可重构 RRAM PUF (LRR-PUF),其中使用连接到同一位线和相同晶体管 (1T4R) 的多个 RRAM 单元来生成单个位响应。所使用的脉冲编程方法也很有创新性:1) 它允许实现节能的实现,2) 它利用切换 RRAM 单元作为 PUF 的主要熵源所需的脉冲数量的变化。所提出的 PUF 的主要特点是它几乎不需要额外成本就可以与任何 RRAM 架构集成。通过大量模拟,包括温度和电压变化的影响以及统计特性,我们证明了 LRR-PUF 表现出其他之前提出的基于 RRAM 的 PUF 所缺乏或难以实现的出色特性,包括高可靠性(几乎 100%),这对于加密密钥生成、可重构性、唯一性、成本和效率至关重要。此外,该设计成功通过了相关的 NIST 随机性测试。
摘要 — 近期所谓的深度伪造的现实创作和传播对社会生活、公民休息和法律构成了严重威胁。名人诽谤、选举操纵和深度伪造作为法庭证据只是深度伪造的一些潜在后果。基于 PyTorch 或 TensorFlow 等现代框架、FaceApp 和 REFACE 等视频处理应用程序以及经济的计算基础设施的开源训练模型的可用性简化了深度伪造的创作。大多数现有检测器专注于检测换脸、口型同步或木偶大师深度伪造,但几乎没有探索用于检测所有三种类型深度伪造的统一框架。本文提出了一个统一的框架,利用混合面部标志和我们新颖的心率特征的融合功能来检测所有类型的深度伪造。我们提出了新颖的心率特征,并将它们与面部标志特征融合,以更好地提取假视频的面部伪影和原始视频中的自然变化。我们利用这些特征训练了一个轻量级的 XGBoost,以对 deepfake 和真实视频进行分类。我们在包含所有类型 deepfake 的世界领袖数据集 (WLDR) 上评估了我们框架的性能。实验结果表明,与比较 deepfake 检测方法相比,所提出的框架具有更优异的检测性能。将我们的框架与深度学习模型候选模型 LSTM-FCN 进行性能比较,结果表明,所提出的模型取得了类似的结果,但它更具可解释性。索引术语 —Deepfakes、多媒体取证、随机森林集成、树提升、XGBoost、Faceswap、Lip sync、Puppet Master。