●与机器学习,HCI/图形和生成设计研究团队率领合作,以使用VR中的生成AI为创作3D对象的先驱技术。杠杆掌握了最新技术,例如gan,变形金刚和自动编码器,以开发创新的解决方案。
定量SEM/EDS分析的原位标本方向方法的开发和验证粘土Klein 1*,Faith Corman 1,Joshua Homan 1,Brady Jones 1,Brady Jones 1,Abbeigh Schroeder 1,Heavenly Duley 1和Chunfei Li 11。宾夕法尼亚州克拉翁大学,化学,数学和物理系,美国宾夕法尼亚州克拉里昂 *通讯作者:clay.w.klein@gmail.com定量分析具有扫描电子/能量分散式X射线/能量的标本元素组成的元素组成,以确保X射线光谱(SEM/EDIMENS)不需要一定的情况。错误。特别是,为了准确的定量EDS分析,标本表面必须足够平坦,并且与SEM的电子束具有正交性[1,2]。在本演示文稿中,我们报告了一种在SEM中,肉眼看不见的足够平坦的微观表面的方法的开发和验证,使得表面与传入的电子束是正交的。该方法基于使用多个SEM图像来测量两个点之间的距离的变化,而两个点之间的界线垂直于SEM倾斜轴,在不同的倾斜角度上。该方法利用了多个SEM图像和测量值,它为我们当前在开发和统计上分析试样方向过程中使用的工具提供了一个良好的测试基础,比以前的方法更有效,更精确[3]。SEM具有两个操作,可以实现对象的原位操纵:旋转和倾斜。要应用该方法,我们使用了以随机旋转和倾斜角度定向的宏观平坦样本。2。[4]。旋转操作通过平行于传入的电子束(定义为轴)的轴的角度旋转样品,而倾斜操作则通过围绕轴(轴)垂直于旋转轴的角度倾斜样品。对于以某个任意角度倾斜的平面,我们将适当的角度定义为 - 参数空间中的坐标,使得平面的表面与电子束正交。一旦确定了足够平坦的平面,我们可以通过以下步骤确定适当的角度:(1)以增量旋转角度进行一系列SEM图像,((2)用一定角度倾斜样品,(3)重复(3)重复(1)和(4)度量,对于每个旋转角度,在斜角和直至图像中的两个特征之间的距离。可以通过形成倾斜度的比率并在每个旋转角度以测量为单位,并将理论上确定的曲线与数据拟合,从而计算出适当的角度。具有50 m的视野,每10°旋转以0°,20°和-20°旋转每10°旋转。测量是在SEM图像上进行的,如图1形成两个点之间的距离之比。在图中显示了这些测量结果的曲线使用最小二乘曲线拟合程序,确定最佳和值。图中还显示了以适当角度定向的样品的图片2;我们看到表面似乎与电子束的方向是正交的。
先天免疫是宿主对病原体入侵的第一条防御线。病毒感染后,宿主细胞识别与结构一致的病原体相关的分子模式,这促使他们迅速启动一系列信号传导过程,从而导致I型Interferon(IFN)(IFN)和其他抗病毒物质产生(1)。在细胞质中传感病毒DNA后,CGA催化了ATP和GTP的环状GMP-AMP(CGAMP)的形成(2)。cgamp进一步激活刺痛,这是内质网上关键的淋巴结蛋白(3)。在微粒体中,激活的刺激性易位从内质网易位,募集伴侣分子TBK1,磷酸化的TBK1招募IRF3(4)。激活的IRF3从细胞质转移到细胞核,以启动I型IFN的产生并诱导抗病毒免疫反应(5,6)。伪造病毒(PRV)引起的人畜共患病伪造是危害猪养殖进一步生长的最危险的爆发之一(7)。伪标记病毒也被称为猪疱疹病毒,猪是PRV的天然容器(8)。PRV可以感染不同年龄的猪群,导致生殖疾病,流产,母猪的堕胎,猪的神经系统疾病和死亡,繁殖公猪的无菌性以及免疫促进性和免疫症状和生长迟缓(9)。PRV会感染许多哺乳动物,从而导致人类,家畜,狗和小鼠的发病率或急性死亡(10-12)。PRV是A HERPESVIRUS家族的成员,已经发展了与宿主免疫反应对抗的策略(15)。对PRV致病机制的研究对于预防和管理动物疾病以及由于PRV可能感染及其高致病性而导致的人的健康和安全至关重要。疱疹病毒是编码病毒蛋白的一类免疫抑制病毒,可以通过不同的方式调节免疫反应并促进病毒免疫逃逸(13、14)。据报道,由PRV编码的各种Tegument蛋白可能调节由CGAS丁字裤信号通路介导的抗病毒先天免疫,从而促进病毒复制和潜在感染(16)。PRV Tegument蛋白UL21通过选择自噬途径结合CGA并诱导CGAS降解(17)。prv ul13靶向刺激和IRF3,并抑制DNA信号通路的激活(18,19)。蛋白酶体路线由于PRV US3而降低了BCLAF1,并且还可以防止ISGF3与ISRE结合的能力(20)。PRV UL42竞争性地将ISRE与ISGF3结合,并减少ISG的产生(21)。这些报告表明,PRV Tegument蛋白可以通过多种方式抑制宿主免疫反应。但是,PRV逃脱宿主先天免疫并调节I型IFN响应的更多机制尚不清楚。我们的研究表明,PRV Tegument蛋白US2是CGAS丁字途径的新调节剂,可防止IFN产生和抗病毒免疫,以响应PRV感染。虽然US2与STING相互作用并降低其稳定性,但US2缺乏率降低了由于PRV而降解的STING蛋白量。尤其是US2与E3泛素一起
放眼全球,虽然该国有 16 个指定的关键基础设施部门 - 涵盖 55 个国家关键职能 - 但在疫情期间,医疗保健和“提供医疗服务”可能分别是同等重要的。总体而言,疫情不仅影响了普通民众,还对支持社会基础、生命线关键职能(食品、水、电力、交通和脆弱的供应链等)的技术工人和关键基础设施劳动力产生了重大影响。随着 CISA COVID 工作组于 1 月结束,我提醒 CISA、白宫、联邦和私营部门领导层注意关键基础设施劳动力和难以替代的技术工人的物质侵蚀(10%、20% 和 30%) - 因为他们会屈服于:死于 COVID、死于非 COVID、受伤、倦怠、退休和家庭支持结构的改变。
Biomatter是一家合成生物学公司,为健康和可持续制造创造了新的蛋白质。该公司开发了智能体系结构™平台,该平台解决了当前工程方法的主要局限性,以解锁数字蛋白质设计和开发的新视野。Biomatter与来自不同行业的领先公司的合作伙伴,根据捕获现有市场并启用蓝态机会的独特酶创建新产品和技术。
妊娠期糖尿病 (GDM) 是指妊娠期间新发或首次确诊的糖耐量异常。据报道,全球 12.8% 的孕妇患有 GDM,在中国 GDM 的发病率已达 14.8%,且呈上升趋势 (1)。妊娠期高血压疾病 (HDP) 是一组以妊娠期间血压升高为特征的母体疾病,包括妊娠期高血压、子痫前期和子痫。据报道,全球 HDP 的患病率为 4.6% 至 13.1% (2),在中国孕妇中约为 5% 至 10% (3)。GDM 和 HDP 均与不良出生结局的风险相关,包括新生儿出生体重、早产 (PTB)、前置胎盘、胎膜早破和胎盘早剥。 GDM 的长期并发症包括母亲和后代的肥胖、糖尿病和心血管疾病。HDP 会增加未来冠状动脉疾病和慢性肾脏疾病的风险。GDM 和 HDP 都是妊娠期最常见的并发症。近年来,GDM 和 HDP 的患病率迅速上升。同时患有这两种疾病的孕妇对临床管理提出了巨大的挑战。先前的研究表明 GDM 和 HDP 密切相关,患有 GDM 的女性患高血压和先兆子痫的风险显著增加(4)。GDM 和 HDP 共病可能会进一步增加不良出生结局的风险。然而,先前的研究大多调查了只有其中一种疾病对不良结局的影响。关于 GDM 和 HDP 共病的研究很少,它们之间的相互作用尚不清楚。单一疾病的 GDM 或 HDP 与不良结局之间的关系已经得到充分证实。 GDM 与巨大儿、先兆子痫、低体重出生儿、产伤(肩难产)、呼吸窘迫、剖宫产、新生儿重症监护病房(NICU)和胎儿死亡等不良结局相关(5,6)。HDP 增加早产、死产、小于胎龄儿(SGA)和低体重出生儿的风险(3,7)。PE 显著增加胎盘早剥的风险(8)。研究表明,对于 GDM 合并 PE 的孕妇,妊娠期体重增加过多(GWG)会更明显地增加早产和大于胎龄儿(LGA)的风险(9),并且其 PE 严重程度与 SGA 呈正相关(10),这表明 GDM HDP 的共病可能会对不良出生结局产生显著影响。另一项研究表明糖尿病合并高血压显著增加早产发生率,但该研究中的是慢性糖尿病而非妊娠期糖尿病(11)。英国的一项研究表明妊娠期糖尿病合并妊娠期高血压显著增加LGA和剖宫产的发生率
人类正处于人工智能 (AI) 加速发展的轨道上。2019 年,最先进的模型是 GPT-2,该模型无法可靠地数到十。仅仅四年后,同样基于深度学习的类似但更大的人工智能系统可以编写软件并就智力主题提供建议。科技公司现在正竞相创造通用人工智能 (AGI):在大多数或所有知识工作中匹敌或超越人类能力的通才和自主系统。2018 年深度学习图灵奖的三位获奖者(Geoffrey Hinton、Yann LeCun 和我)将 AGI 的时间线定在几年到几十年的区间内。在本文中,我研究了这其中涉及的一些更大规模的风险,并提出了减轻灾难性后果风险的方法。
15:45 – 16:00 欧盟人工智能法案:医疗保健领域的新机遇和挑战 演讲者:Neringa Gaubienė 博士(维尔纽斯大学) 演讲将讨论欧盟人工智能法案及其对医疗保健行业的影响,重点关注新机遇和挑战。该法案于今年 8 月生效,建立了一个四级风险分类系统,医疗保健中使用的人工智能系统通常属于高风险类别,需要严格的透明度和安全标准。为了确保患者的信任,该法案要求透明的文档、定期审计和高网络安全要求。
对于眼科,对于传统的基于被动扩散的药物干预,仍然存在许多不确定性和挑战。主要障碍之一是由复杂的玻璃体体和内部生物学大分子引起的有限渗透。在这里,我们第一次证明了新型TiO 2 @N-AU纳米线(NW)电动机/机车机器人由无线自然可见光诱导的动作可以自主,有效地通过光电粒的机制自动渗透到玻璃体体内。具有效率的推进,以及与玻璃体网络的空隙相匹配的NW电动机的纳米级尺寸,无创深入玻璃体体,并克服非均匀的非牛顿液(剪切薄和粘弹性)。我们设想了主动可见的轻型TIO 2 @N-AU NW电动机可容纳深眼病和无线生物电子药物的巨大应用前景。©2022 Elsevier Ltd.保留所有权利。