将地理空间信息技术和空间统计方法融入卫生服务研究,是一种范式转变,不同于传统的非空间分析,后者历来忽视了地理学的关键规律 ( 1 )。在过去十年中,卫生经济学和公共卫生领域取得了显著进展,特别是在采用先进的地理空间技术和复杂的空间卫生统计技术 ( 2 ) 方面。本社论旨在强调并批判性地评价这些技术和方法的一些前沿应用,阐明它们在应对当代公共卫生挑战方面的重要性,特别是在卫生服务研究领域 ( 3 )。在卫生服务研究范围内,两个关键维度——空间公平和空间可达性——引起了广泛关注 ( 4 )。本研究主题包含四篇深入探讨这些维度的关键文章。在研究“衡量医疗设施和劳动力资源的不平等:中国的一项纵向研究”中,董等人。探讨医疗资源分布空间不均等的细微方面,既包括均等化倾向,也包括地理集聚趋势。借鉴他们的研究成果,我们主张将重点转向既精确又全面的细粒度、小区域分析,主张进行考虑驱动因素、时空动态和各种指标综合评估的多维评估(5、6)。关于空间医疗可达性问题,华等人在“防疫设施是否有效?城市应如何选择防疫设施:以武汉市为例”中以旅行时间为核心
* 通讯作者:陈洪生、李世龙、钱浩良,浙江大学信息与电子工程学院量子信息交叉学科中心、现代光学仪器国家重点实验室,杭州 310027,浙江大学;浙江大学-杭州全球科技创新中心、浙江省先进微纳电子器件与智能系统重点实验室,杭州 310027,浙江大学;浙江大学 ZJU-UIUC 学院国际联合创新中心,海宁 314400,浙江大学,电子邮箱:hansomchen@zju.edu.cn (H. Chen)、shilong.li@zju.edu.cn (S. Li)、haoliangqian@zju.edu.cn (H. Qian)。https://orcid.org/0000-0002-5735-9781 (H. Chen)。 https://orcid.org/0000-0003-4200-9479 (H. Qian) 王海腾、牛俊如、陈巧璐、邵华和杨逸浩,浙江大学信息与电子工程学院现代光学仪器国家重点实验室量子信息交叉学科中心,杭州 310027,中国;浙江大学-杭州全球科技创新中心、浙江省先进微纳电子器件与智能系统重点实验室,杭州 310027,中国;浙江大学 ZJU-UIUC 学院国际联合创新中心,海宁 314400,中国 赵思涵,浙江大学物理学院量子信息交叉学科中心、硅与先进半导体材料国家重点实验室、浙江省量子技术与器件重点实验室,杭州 310058,中国。 https://orcid.org/0000-0003-2162-734X
WAUU地区董事会成员对我们地区居民的居民印象深刻。 div>我们想欣赏社区组织,我们的农业和房屋的大量交易。 div>我们的环境在志愿者和实践中的作用有效,例如Emeromats Envoryge Trust,Whau River Cratement Trust和Wildlink。 div>我们还感谢我们的不同社区已经参与了Pasifik委员会和Whau族裔集体。 div>Wharetu区域地图反映了我们的支持,并与这些过程和其他组织相处,使WAUU地区对每个人都变得更好。 div>
QUINGO 开发团队: 傅学锋,国防科技大学计算机学院量子信息研究所、高性能计算国家重点实验室,中国 俞金涛,数学工程与先进计算国家重点实验室,中国 苏星,国防科技大学计算机学院,中国 蒋涵如,鹏程实验室量子计算中心,中国 吴华,华东师范大学上海市可信计算重点实验室,中国 程福成、邓曦、张金荣,鹏程实验室量子计算中心,中国 金磊、杨一航、徐乐、胡春超,郑州大学信息工程学院,中国 黄安琪、黄光耀、强小刚、邓明堂、徐萍、徐伟霞,国防科技大学计算机学院量子信息研究所、高性能计算国家重点实验室,中国国防科技大学计算机学院,中国 刘万伟,国防科技大学计算机学院,中国 张宇,中国科学技术大学计算机科学与技术学院,中国 邓宇欣,华东师范大学上海市可信计算重点实验室,中国 吴俊杰,国防科技大学计算机学院量子信息研究所、高性能计算国家重点实验室,中国 冯远,悉尼科技大学量子软件与信息中心,澳大利亚
技术程序委员会 模拟电路和技术 主席:Antonio Liscidini,多伦多大学 联合主席:Edoardo Bonizzoni,帕维亚大学 委员会成员:Mark Oude Alink,特温特大学 Devrim Aksin,ADI Ping-Hsuan Hsieh,国立清华大学 Hiroki Ishikuro,庆应义塾大学 Mahdi Kashmiri,元数据转换器 主席:Seung-Tak Ryu,韩国科学技术研究院 联合主席:Lukas Kull,思科系统 委员会成员:Vanessa Chen,卡内基梅隆大学 Chia-Hung Chen,国立交通大学 Jin-Tae Kim,建国大学,韩国 Martin Kinyua,台积电 Shaolan Li,佐治亚理工学院 Qiang Li,电子科技大学 Yong Liu,博通 Zhichao Tan,浙江大学 Filip Tavernier,天主教鲁汶大学 Haiyang (Henry) Zhu,ADI 数字电路、SoC、和系统主席:Gregory Chen,英特尔公司联合主席:Saad Bin Nasir,高通委员会成员:Behnam Amelifard,高通Elnaz Ansari,谷歌Ningyuan Cao,圣母大学Jie Gu,西北大学Monodeep Kar,IBMWin-San (Vince) Khwa,台积电Bongjin Kim,加州大学圣巴巴拉分校Alicia Klinefelter,nVidiaYoonmyung Lee,成均馆大学Yingyan (Celine) Lin,佐治亚理工学院Yongpan Liu,清华大学Divya Prasad,AMDElkim Roa,格罗方德半导体Visvesh Sathe,佐治亚理工学院Shreyas Sen,普渡大学WeiWei Shan,东南大学,南京
确认您的声明:本发售通函乃根据您的要求向您发送,通过接受电子邮件并访问随附的发售通函,您即被视为向华泰金融控股(香港)有限公司、海通国际证券有限公司、香港上海汇丰银行有限公司、中信里昂证券有限公司、国泰君安证券(香港)有限公司、中信建投(国际)融资有限公司、瑞穗证券亚洲有限公司、华金证券(国际)有限公司、农银国际融资有限公司、中国银行股份有限公司、中国国际金融香港证券有限公司、兴证国际经纪有限公司、招银国际融资有限公司、民银证券有限公司、信银(香港)融资有限公司、广发证券(香港)经纪有限公司、华夏银行股份有限公司香港分行、工银国际证券有限公司、澳门国际银行有限公司、东方证券(香港)有限公司、申万宏源证券(香港)有限公司、三井住友日兴证券(香港)有限公司、浦银国际融资有限公司、太阳河国际证券集团Limited 和 TFI Securities and Futures Limited(统称“联席牵头经办人”)请注意,您向我们提供的电子邮件地址以及本电子邮件发送到的地址不位于美国或其领土或属地,并且您同意以电子传输方式接收随附的发售说明书及其任何修订或补充。
在2019年,瓦卡塔恩委员会(WhakatāneCouncil)收到了气候变化的原则,以考虑所有决策的气候变化。 div>这种气候变化策略以及室内原则,以及我们在气候变化中发生的挑战和机遇的工作。 div>我们知道这个世界,但是我们不知道要尽快做什么。 div>在未来三年内审查该策略,我们需要加强该策略基础的基础,例如,成本的好处。 div>
程序委员会 George Amvrosiadis,卡内基梅隆大学 Ali Anwar,明尼苏达大学 Oana Balmau,麦吉尔大学 John Bent,希捷 Janki Bhimani,佛罗里达国际大学 Angelos Bilas,克里特岛大学和 FORTH Ali R. Butt,弗吉尼亚理工大学 Andromachi Chatzieleftheriou,微软研究院 Young-ri Choi,蔚山国立科学技术研究所 Angela Demke Brown,多伦多大学 Peter Desnoyers,东北大学 Aishwarya Ganesan,伊利诺伊大学厄巴纳-香槟分校和 VMware Research Ashvin Goel,多伦多大学 Haryadi Gunawi,芝加哥大学 Dean Hildebrand,谷歌 Yu Hua,华中科技大学 Jian Huang,伊利诺伊大学厄巴纳-香槟分校 Jooyoung Hwang,三星电子 Jinkyu Jeong,延世大学 Sudarsun Kannan,罗格斯大学 Sanidhya Kashyap,洛桑联邦理工学院 Youngjin Kwon,韩国科学技术研究院技术(KAIST) Patrick PC Lee,香港中文大学(CUHK) Sungjin Lee,大邱庆北科学技术大学(DGIST) Cheng Li,中国科学技术大学 Youyou Lu,清华大学 Peter Macko,MongoDB Changwoo Min,Igalia Beomseok Nam,成均馆大学 Sam H. Noh,弗吉尼亚理工大学 Raju Rangaswami,佛罗里达国际大学 Jiri Schindler,IonQ Phil Shilane,戴尔科技集团 Keith A. Smith,MongoDB Vasily Tarasov,IBM 研究部 Eno Thereska,Alcion, Inc. Carl Waldspurger,Carl Waldspurger 咨询公司 Wen Xia,哈尔滨工业大学 Gala Yadgar,以色列理工学院 Ming-Chang Yang,香港中文大学(CUHK)
白若冰 东北大学机械与工业工程助理教授 203 Snell 工程中心, 360 Huntington Ave, Boston, MA 02115 电子邮件:ru.bai@northeastern.edu 办公室电话:617-373-7150 https://sites.google.com/view/ruobingbai 教育 工程科学博士 2018 哈佛大学 论文:“水凝胶的疲劳” 导师:索志刚 理论与应用力学学士 2012 北京大学 论文:“具有表面效应和相变的锂离子电池应力分析” 导师:段慧玲 学术职位 助理教授 2021 年 1 月 - 至今 东北大学,机械与工业工程系 博士后研究员 2018 年 8 月 - 2020 年 12 月 加州理工学院,机械与土木工程系 导师:Kaushik Bhattacharya 博士后研究员 2018 年 5 月 - 8 月2018 研究生助理 2012 年 9 月 - 2018 年 5 月 哈佛大学,约翰·保尔森工程与应用科学学院 导师:索志刚 本科生助理 2010 年 2 月 - 2012 年 6 月 北京大学,湍流与复杂系统国家重点实验室 导师:段慧玲 研究兴趣 • 固体力学与大变形 • 软活性材料:水凝胶、液晶弹性体和生物材料 • 材料的断裂和粘附 • 材料的多物理场:力学、热力学、化学、光学和电磁学 • 材料的不稳定性 期刊出版物 22. Ruobing Bai、Eric Ocegueda、Kaushik Bhattacharya,“光活性半结晶聚合物中的光化学诱导相变”。 Physical Review E , 2021, 103, 033003。21. Mutian Hua, Cheolgyu Kim, Yingjie Du, Dong Wu, Ruobing Bai, Ximin He, “摇摆凝胶:基于动态屈曲的化学机械自振荡”。Matter , 2021, 4, 3, 1029-1041。
[1] C. M. Bender和S. Boettcher,具有P T对称性的非热汉尔顿人的真实光谱,物理。修订版Lett。 80,5243(1998)。 [2] W. D. Heiss,特殊点的物理学,J。Phys。 A 45,444016(2012)。 [3] I. Rotter,非汉密尔顿汉密尔顿操作员和开放量子系统的物理学,J。Phys。 A 42,153001(2009)。 [4] M. V. Berry,捷克的非赫米特式脱生物的物理学。 J. Phys。 54,1039(2004)。 [5] W. D. Heiss,非官员运营商的特殊点,J。Phys。 A 37,2455(2004)。 [6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。 修订版 Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。Lett。80,5243(1998)。[2] W. D. Heiss,特殊点的物理学,J。Phys。A 45,444016(2012)。[3] I. Rotter,非汉密尔顿汉密尔顿操作员和开放量子系统的物理学,J。Phys。A 42,153001(2009)。[4] M. V. Berry,捷克的非赫米特式脱生物的物理学。J. Phys。 54,1039(2004)。 [5] W. D. Heiss,非官员运营商的特殊点,J。Phys。 A 37,2455(2004)。 [6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。 修订版 Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。J. Phys。54,1039(2004)。 [5] W. D. Heiss,非官员运营商的特殊点,J。Phys。 A 37,2455(2004)。 [6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。 修订版 Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。54,1039(2004)。[5] W. D. Heiss,非官员运营商的特殊点,J。Phys。A 37,2455(2004)。[6] N. Hatano和D. R. Nelson,非热量子力学中的本地化过渡,物理。修订版Lett。 77,570(1996)。 [7] M.-A。 Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。 [8] H. Hodaei,M.-A。 Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。 [9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X. [10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M. Photonics 8,524(2014)。 [11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。 物理。 社区。Lett。77,570(1996)。[7] M.-A。Miri和A.Alù,《光学和光子学的特殊点》,Science 363,EAAR7709(2019)。[8] H. Hodaei,M.-A。Miri,M。Heinrich,D。N. Christodoulides和M. Khajavikhan,Parity-time-symmetric Microlow Lasers,Science 346,975(2014)。[9] L. Feng,Z。J。Wong,R.-M。 Ma,Y。Wang和X.[10] L. Chang,X。Jiang,S。Hua,C。Yang,J。Wen,L。Jiang,G。Li,G。Wang和M.Photonics 8,524(2014)。[11] B. Peng,s。 K.Özdemir,F。Lei,F。Monifi,M。Gianfreda,G。L。Long,S。Fan,F。Nori,C。M。Bender和L. Yang,Parity-Time-Time-Time-Amportric-Amperigric-Antimmemptric Whispering-Gallery-Gallery Microcavities,Nat。物理。社区。10,394(2014)。 [12] L. Zhang等人,《扭曲绕组拓扑的声学非热皮肤效应》,Nat。 12,6297(2021)。 [13] K. Ding,G。Ma,M。Xiao,Z。Q. Zhang和C. T. Chan,《多个特殊点的出现,合并和拓扑特性及其实验实现》。 修订版 x 6,021007(2016)。 [14] W. Tang,X。Jiang,K。Ding,Y.-X. Xiao,Z.-Q. Zhang,C。T。Chan和G. [15] 物理。 16,747(2020)。 [16] D. Zou,T。Chen,W。He,J。Bao,C。H。Lee,H。Sun和X. 社区。 12,7201(2021)。 [17] A. Ghatak,M。Brandenbourger,J。VanWezel和C. Coulais,在主动机械超材料中观察到非富尔米特拓扑及其散装 - 边缘的对应关系,Proc。 natl。 学院。 SCI。 美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。10,394(2014)。[12] L. Zhang等人,《扭曲绕组拓扑的声学非热皮肤效应》,Nat。12,6297(2021)。[13] K. Ding,G。Ma,M。Xiao,Z。Q. Zhang和C. T. Chan,《多个特殊点的出现,合并和拓扑特性及其实验实现》。修订版x 6,021007(2016)。[14] W. Tang,X。Jiang,K。Ding,Y.-X.Xiao,Z.-Q. Zhang,C。T。Chan和G. [15] 物理。 16,747(2020)。 [16] D. Zou,T。Chen,W。He,J。Bao,C。H。Lee,H。Sun和X. 社区。 12,7201(2021)。 [17] A. Ghatak,M。Brandenbourger,J。VanWezel和C. Coulais,在主动机械超材料中观察到非富尔米特拓扑及其散装 - 边缘的对应关系,Proc。 natl。 学院。 SCI。 美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。Xiao,Z.-Q.Zhang,C。T。Chan和G.[15]物理。16,747(2020)。[16] D. Zou,T。Chen,W。He,J。Bao,C。H。Lee,H。Sun和X.社区。12,7201(2021)。[17] A. Ghatak,M。Brandenbourger,J。VanWezel和C. Coulais,在主动机械超材料中观察到非富尔米特拓扑及其散装 - 边缘的对应关系,Proc。natl。学院。SCI。 美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。SCI。美国117,29561(2020)。 [18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。 [19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。 修订版 Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。美国117,29561(2020)。[18] W. Wang,X。Wang和G. Ma,拓扑模式的非热形变,自然608,50(2022)。[19] N. Okuma,K。Kawabata,K。Shiozaki和M. Sato,非炎性皮肤效应的拓扑起源,物理。修订版Lett。 124,086801(2020)。 修订版 x 9,041015(2019)。Lett。124,086801(2020)。修订版x 9,041015(2019)。[20] K. Kawabata,K。Shiozaki,M。Ueda和M. Sato,非热物理学中的对称性和拓扑,物理学。