空气处理系统控制应用 ................................................................................................................ 201 简介 .............................................................................................................. 203 缩写 .............................................................................................................. 203 有效控制的要求 .............................................................................................. 204 应用 - 通用 ................................................................................................ 206 阀门和挡板选择 ...................................................................................... 207 符号 ............................................................................................................. 208 通风控制过程 ............................................................................................. 209 固定室外空气量控制 ............................................................................. 211 加热控制过程 ............................................................................................. 223 预热控制过程 ............................................................................................. 228 加湿控制过程 ............................................................................................. 235 冷却控制过程 ............................................................................................. 236 除湿控制过程 ............................................................................................. 243 加热系统控制过程 ............................................................................................. 246 全年系统控制过程 ............................................................................................. 248 ASHRAE 湿度图 ............................................................................................. 261
i。 Roods接近II。Bobath和Neuro Developmental Therapy(NDT)III。本体感受性神经肌肉促进(PNF)IV。vojta概念诉感觉整合疗法(SI)VI。肌膜释放(MFR)VII。儿科手动疗法VIII。导电教育IX。辅助治疗x。系统/基于任务/面向的方法XI。功能电刺激XII。体重支持跑步机训练xiii。约束诱导运动疗法XIV。镜像疗法和虚拟现实xv。Biofeatback,Robotics XVI。水生治疗XVII。肺扩张疗法和呼吸机XVIII。 支气管卫生治疗/姿势排水XIX。 加湿,氧疗法,雾化肺扩张疗法和呼吸机XVIII。支气管卫生治疗/姿势排水XIX。加湿,氧疗法,雾化
监测呼吸状况,呼吸功能评估每个诊所就诊(强迫生命能力,鼻腔吸气压力,峰值咳嗽流)使用手持式肺活量测定法(COVID19限制)。非侵入性正压通风(由MDT - 外展专家护士在家中发起)。sialorrhoea-吸力,阿米替林,口服或透皮hyoscine,舌下阿托品滴;难治性的唾液 - 肉毒杆菌毒素注射到腮腺和/或下颌腺体,唾液腺照射;支气管分泌物 - 加湿,雾化器,粘液溶剂(如果足够的咳嗽流) - 肠甲苯蛋白酶,N-乙酰基半胱氨酸,β受体受体拮抗剂和/或抗胆红素能支气管扩张剂;机械不利用exsufflator;治疗呼吸道感染;管理呼吸衰竭
对现代机械系统的需求是修缮历史建筑最常见的原因之一。这类工作包括升级旧的机械系统、提高现有建筑的能源效率、安装新的供暖、通风或空调 (HVAC) 系统,或者——尤其是对于博物馆——安装具有加湿和除湿功能的气候控制系统。安装新的 HVAC 或气候控制系统的决定通常是出于对居住者健康和舒适度的考虑、让老建筑更具市场价值的愿望,或者需要提供用于操作计算机、储存文物或展示博物馆藏品的专门环境。不幸的是,居住者的舒适度和对建筑内物品的关注有时比建筑本身受到更多的关注。在很多情况下,将现代室内气候舒适度标准应用于历史建筑已被证明会对历史材料和装饰面层造成损害。
摘要膜电极组件(MEA)的性能阻碍了燃料电池的商业化。MEA受加湿,温度和氢气流量的极大影响。在这项研究中,使用PT/C和COFE/N-C催化剂在质子交换膜燃料电池中确定工作条件对MEA的影响。在此,制备了两种使用NAFION-212膜的MEAS类型的测量和测试。第一个MEA的阳极和阴极分别用Pt/C和COFE/N-C催化剂覆盖,而第二个MEA在两个电极上使用了PT/C催化剂。使用循环伏安法和电化学障碍光谱谱分别以PT/C和COFE/N-C催化剂的形式表征了电极,分别获得电化学表面积(ECSA)和电导率的电导率。在不同的工作条件下测试了两个测量的性能,例如各种加湿器温度(40°C,60°C,80°C和100°C)和氢气流速(100、200、300和400 mL/min)。具有PT /C催化剂的电极比COFE /N-C电极(0.018 m 2 /g)表现出更高的ECSA(0.245 m 2 /g)。类似地,PT/C电极具有比COFE/N-C电极(4.4×10 -3 s/cm)更高的电导率(7.2×10 -3 s/cm)。因此,在两个电极上使用PT/C催化剂的第二MEA的开路电压(OCV)均显示出比第一MEA(0.790 V)的OCV更高的值(0.890 V)。此外,加湿器温度在80°C下最佳,并且在第二个和第一个MEA中,其功率密度水平分别高达10.14和3.43 mW/cm 2。此外,MEA的性能还受氢气流量的影响。在第一个MEA的最佳氢气流速为400 mL/min的情况下,实现了4.93 mW/cm 2的功率密度。同时,第二个MEA需要较低的氢气流速(200 mL/min)才能达到10.14 mW/cm 2的最大功率密度。关键字:质子交换膜燃料电池,MEA性能,Co-Fe/n-C,加湿温度,氢气流速
设备享有 Airedale 标准零件(非消耗品)和人工保修,保修期为自调试之日起 12 个月或自发货之日起 18 个月(以较早时间为准)。(不包括任何专业通道或起重设备的费用。)调试将由 Airedale International Air Conditioning Ltd 或经批准的 Airedale 调试公司进行。为了进一步保护您对 Airedale 产品的投资,我们推出了 Airedale 服务,该服务可提供全套调试服务、综合维护包和 24 小时、365 天(英国本土)的服务。如需免费报价,请联系我们的 Airedale 服务或您当地的销售工程师。所有 Airedale 产品均根据欧盟关于防止积水的指令设计,积水与军团菌等污染物的风险有关。在适用的情况下,通过梯度排水到出口可有效去除冷凝水,在使用时,加湿系统在正常运行期间会产生无菌、无毒的蒸汽。为了有效预防此类风险,必须按照 Airedale 建议对设备进行维护。
15050 基本机械材料与方法 15060 管道和管件 15100 阀门 15120 管道专业技术 15121 管道膨胀补偿 15130 仪表和温度计 15140 管道支架和锚 15170 电机和变频驱动器 15190 机械识别 15240 振动隔离和地震控制 15250 机械绝缘 15300 喷水灭火系统 15410 水暖管道 15430 水暖专业技术 15440 水暖装置 15450管道设备 15480 实验室专用系统 15510 水力管道 15535 制冷剂管道及专用设备 15545 化学(水)处理 15750 加湿系统 15855 带盘管的屋顶空气处理装置 15885 空气净化 15890 管道系统 15910 管道系统附件 15930 实验室增压控制 15945 楼宇调试 15950 楼宇自动化系统 (BAS) 概述 15951 BAS 基础材料、接口设备和传感器 15952 BAS 操作员接口15953 BAS 现场面板 15954 BAS 通信设备 15955 基础软件和编程 15959 BAS 调试 15980 操作序列 15985 多系统集成平台 15990 测试、调整和平衡
15050 基本机械材料与方法 15060 管道和管件 15100 阀门 15120 管道专业技术 15121 管道膨胀补偿 15130 仪表和温度计 15140 管道支架和锚 15170 电机和变频驱动器 15190 机械识别 15240 振动隔离和地震控制 15250 机械绝缘 15300 喷水灭火系统 15410 水暖管道 15430 水暖专业技术 15440 水暖装置 15450管道设备 15480 实验室专用系统 15510 水力管道 15535 制冷剂管道及专用设备 15545 化学(水)处理 15750 加湿系统 15855 带盘管的屋顶空气处理装置 15885 空气净化 15890 管道系统 15910 管道系统附件 15930 实验室增压控制 15945 楼宇调试 15950 楼宇自动化系统 (BAS) 概述 15951 BAS 基础材料、接口设备和传感器 15952 BAS 操作员接口15953 BAS 现场面板 15954 BAS 通信设备 15955 基础软件和编程 15959 BAS 调试 15980 操作序列 15985 多系统集成平台 15990 测试、调整和平衡
俄勒冈大学最近发表的一项研究表明,通风、过滤和湿度可有效减少空气中的 SARS-CoV- 2 病毒颗粒。11 名 COVID 阳性受试者在环境控制室中分别进行了三天不同的活动。在研究期间,通风、空气过滤和湿度水平各不相同,并监测了空气中和表面上的病毒颗粒数量。研究人员发现,增加通风和过滤可显著减少空气和表面上的 SARS-CoV-2 病毒颗粒数量。当湿度增加时,空气中的病毒颗粒减少了一半,导致表面上的病毒颗粒增加。Condair 北欧销售集群负责人 Tony Fleming 评论道:“这项研究确实意义重大,因为它是第一项展示空气处理策略如何影响 COVID 在物理环境中的空气传播的研究,而不是通过计算机建模。结果证明了当局强调增加通风的合理性,但也凸显了对公共建筑加湿的必要性。官方对加湿的建议一直非常缺乏。最近更新的建筑法规 F 部分完全忽略了室内湿度低的问题以及