新能源汽车作为缓解城市环境问题的有效途径,已成为研究其在中国的发展现状和未来前景的焦点。针对不同城市新能源汽车产业发展的巨大差异,本研究以中国十个典型城市为研究对象,开发了一个新颖的多属性决策(MADM)框架来评估这些城市推广新能源汽车的前景。研究首先建立一套全面的指标体系,涵盖经济、政策支持、基础设施、技术创新和环境等关键维度,包含五种不同类型的评价信息。该体系融合了五种不同类型的评价信息:精确数、区间数、三角模糊数、犹豫模糊数和概率语言词集(PLTS),增强了框架处理不同数据类型的能力。然后,采用改进的熵(IEntropy)权重法确定评价指标的客观权重。然后将这些客观权重与VIKOR方法相结合,形成一种综合混合评估信息的结构化群体决策方法。基于模块化思维,综合混合评估信息对每个城市的新能源汽车发展前景进行评估和排序。敏感性分析和比较分析进一步证明了所提出的MADM框架的稳健性和可靠性。排序结果表明,上海和广州在新能源汽车推广方面处于领先地位,而哈尔滨和郑州等城市则落后。基于这些发现,本研究提出了有针对性的政策建议,以促进中国主要城市新能源汽车产业的可持续发展。
2024 年,奥迪集团向客户交付了 170 万辆奥迪汽车、10,643 辆宾利汽车、10,687 辆兰博基尼汽车和 54,495 辆杜卡迪摩托车。2023 财年,奥迪集团实现总收入 699 亿欧元,营业利润 63 亿欧元。2023 年,奥迪集团全球年均员工人数超过 87,000 人,其中超过 53,000 人在德国奥迪股份公司工作。凭借其极具吸引力的品牌和众多新车型,该集团正在系统地朝着成为可持续、完全联网的高端移动出行提供商的目标迈进。
有机分子晶体,例如对苯二酚笼状物,可能是很有前途的储氢材料。笼状物是由客体分子(这里是 H 2 )和形成空腔的宿主分子组成的超分子化合物。对苯二酚 (HQ) 与气体(例如 CO 2 1 或 CH 4 2 )的形成在文献中是众所周知的。但是,对于氢气捕获,一些重要的限制限制了这种材料的发展,例如高压和低笼状物形成动力学。Han 等人 3 通过预先形成无客体结构,然后在 350 bar 下用 H 2 填充它,获得了氢 HQ-笼状物。人们还进行了其他尝试来提高对苯二酚笼状物的存储容量,例如添加 C 60 4,但迄今为止尚未发现最佳系统。本研究开发的策略是将对苯二酚浸渍在多孔材料的微孔内,以利用限制效应来启动限制包合物的形成并改善包合动力学。为此,开发了一种新颖的浸渍方法,并在几种具有不同化学性质(碳、聚合物、二氧化硅)和不同孔径(1 至 15 纳米之间)的材料上进行了测试。使用 TGA-DSC、氩气孔隙率仪和 MAS-NMR 来表征新型复合材料。有机晶体的浸渍率可达到混合材料质量的 35%。用磁悬浮天平测量氢的存储容量。对于浸渍在多孔聚苯乙烯基材料中的 HQ 的情况,通过将温度在 0 到 100°C 之间循环可以达到 HQ 包合物的形成。在 20 bar 氢气压力下,经过 10 个温度循环,样品的存储容量从每克样品 0.1 wt.% 增加到每克 HQ 1.3 wt.%(或每克 HQ 7 wt.%)。此外,该系统在室温下稳定,P = 1 bar 氢气压力下,每克 HQ 的存储容量为 5.7wt.% H 2,并且在 100°C 时可完全释放 H 2。使用 MCM-41+HQ 等其他材料也获得了类似的存储容量。
异常染色体是癌症,阿尔茨海默氏症,帕金森氏症,癫痫和自闭症等遗传疾病的原因。核型分析是诊断遗传疾病的标准程序。识别异常通常是昂贵的,耗时的,在很大程度上依赖专家解释,并且需要相当大的手动效果。e效应是为了自动化核图分析。但是,大型数据集的不可用,尤其是包括染色体异常的样本的数据集提出了一个重要的挑战。自动化模型的开发需要广泛的标记和令人难以置信的异常数据,以准确识别和分析异常,这些异常非常困难地获得了足够的数量。尽管基于深度学习的体系结构在医学图像异常检测中产生了最先进的性能,但由于缺乏异常数据集,它不能很好地概括。这项研究介绍了一种新型的混合方法,该方法结合了无监督和监督的学习技术,以克服有限标记的数据和可伸缩性的挑战。最初对基于自动编码器的系统进行了使用未标记的数据培训,以识别染色体模式。它是在标记的数据上进行的,然后使用卷积神经网络(CNN)进行分类步骤。使用了234,259个染色体图像的独特数据集,包括训练,验证和测试集。在染色体分析的规模中标记出显着的成就。所提出的混合系统准确地检测到单个染色体图像中的结构异常,在对正常和异常染色体分类时达到了99.3%的精度。我们还使用结构相似性指数度量和模板匹配来识别与正常染色体不同的异常染色体的部分。这种自动化模型有可能显着促进与染色体相关疾病的早期检测和诊断,从而影响遗传健康和神经系统行为。
对于关注AI披露的媒体出版商存在着根本的紧张关系:“围绕AI生成的媒体的标签和发现的主要话语是基于担心这种内容会误解或以其他方式欺骗公众的成员的基础。” 24在新闻环境中,欺骗的意图是与诽谤接近的指控。“与其他类型的数字平台相比,在社论媒体中区分AI的使用非常重要,”瑞典出版商也强调。25此外,媒体一词尚未明确定义:监管机构,行业,平台,
摘要:杂交作为盐度耐受性的玉米育种计划的一部分,可以有助于提高盐水的盈利能力,并减轻盐胁迫对植物的有害影响。本研究旨在评估从基于Griffing的方法I获得的42个F1混合体的生理和谷物产量性能,以开发最佳杂种的初步选择,用于中等盐水,以用于中等盐水,以在墨西哥Yaqui Valley,墨西哥Yaqui Valley中进行未来的研究。这些杂交在适度的盐水条件下,在晶格(7×7)设计中具有四个复制。与植物气体交换有关的六个变量,并评估了谷物产量。ANOVA,当杂种之间发现显着差异时,通过Tukey的事后测试比较了平均值,为1%。Pearson相关性均在所有变量之间估计。大多数变量表现出统计差异,除了叶绿素含量和归一化差异植被指数(NDVI)外。变量中的差异最大的光合作用,蒸腾,用水效率和气孔电导揭示了中等盐度条件下杂种内的遗传变异性。这些结果使我们能够提出具有较高光合作用的混合体(> 27 µmol CO 2 m -2 s -1),中等蒸腾作用(2-3 µmol H 2 O M -2 S -1),高水利用效率(> 8 µmol CO 2 µmol CO 2 µmol H 2 µmol H 2 O M -2 S -2 S -1)和高率(s seline for Selire for Seleter),以适用于SALINE(s)。
这项研究评估了人工神经网络(ANN),基因表达编程(GEP)和HEC-HMS模型在评估伊朗北部卡西利亚集水区径流的影响方面的HEC-HMS模型。从2007年到2021年的每日数据分为校准(2007- 2018年)和验证(2018-2021)。结果表明,当单独应用时,GEP和ANN模型在所有性能指标(包括RMSE和NSE)中超过了HEC-HMS模型。此外,与单个机器学习(ML)或HEC-HMS模型相比,将HEC-HM与GEP和HEC-HMS与ANN的HEC-HMS和HEC-HMS集成的混合模型相比表现出色。使用LARS-WG软件生成了输入变量(温度和降雨),并结合了五个气候模型和SSP585场景,用于未来的气候变化研究。此外,这些混合模型还用于预测观察到的时期(2007-2018)和未来期(2031-2050和2051-2070)的径流变化。结果表明,年平均降水量,极端降水事件和降水强度的增加,这意味着未来卡西利亚集水区的洪水和侵蚀可能性更高,伊朗北部的小集水集也是如此。
摘要添加剂制造业(AM)的最新进展引起了重大的工业兴趣。最初,AM主要与制造原型相关联,但是AM的进步与可用材料的扩展范围(尤其是用于生产金属零件)扩大的范围已经扩大了应用区域,现在该技术也可以用于制造功能零件。尤其是,AM技术可以用传统的制造工艺创建复杂和拓扑优化的几何形状。然而,在大多数情况下,使用独立的AM技术,无法实现紧密的几何公差以及航空航天,生物医学和汽车行业的严格表面完整性要求。因此,AM零件需要大量的后处理,以确保满足其表面和尺寸要求以及它们各自的机械性能。在这种情况下,不足为奇的是,AM与后处理技术的整合到单个和多设置的处理解决方案中,通常称为Hybrid AM,已成为行业非常有吸引力的命题,同时吸引了重大的R&D兴趣。本文回顾了与混合AM解决方案相关的当前研究和技术进步。特别的重点是将基于激光AM的功能加工粉末功能的混合AM解决方案与必要的后制处技术,用于生产具有必要准确性,表面完整性和材料特性的金属零件。将基于激光AM与后处理技术集成的市售混合动力AM系统以及其关键应用领域还进行了审查。最后,讨论了扩大混合AM解决方案的工业使用方面的主要挑战和开放问题。
Press Release For Immediate Release VALTOM and Waga Energy complete first RNG injection using a hybrid biogas source Eybens (France), January 7 th , 2025 - VALTOM and Waga Energy commissioned a renewable natural gas (RNG) production unit in Clermont-Ferrand (Central France), supplied both by biogas from the Puy-Long Landfill and the anaerobic digestion plant at the Vernéa废物管理设施。这是欧洲同类产品的第一个单位。2024年12月18日,在法国中部的克莱尔蒙特 - 弗兰德地区负责废物管理的克莱尔蒙特 - 费德兰德(Clermont-Ferrand),以及垃圾填埋场生产可再生天然气的全球专家瓦加(Waga Energy),委托首个RNG生产单元由氢生物源提供的RNG生产单元。这个在欧洲的独特项目利用了Wagabox®技术,该技术由Waga Energy开发和专利,从Puy-Long垃圾填埋场和Valtom废物管理设施Vernéa的Puy-Long垃圾填埋场和Anaerobic Digestion工厂升级沼气,分别位于瓦尔托姆(Valtom)的废物管理设施,分开了几百米。通过净化沼气获得的RNG直接注入法国运营商GRDF的网络,以提供当地的家庭和企业以及Clermont-Ferrand的CNG/Biocng填充站。Wagabox®单位每年可提供多达51,000 MMBTU(15 GWH)的RNG,相当于年度消费约2,000户房屋,或者在汽车天然气(Biocng)上运行的60辆公共汽车。其调试将避免排放大约2500吨的CO 2等式。每年通过用RNG代替化石天然气进入大气,从而减少了温室气体排放1。从Puy-Long垃圾填埋场产生的沼气先前已转化为电力,厌氧消化厂的沼气被用来为Vernéa设施的焚化炉供电。rng代表了一种脱碳化的解决方案,这些解决方案是特殊难以推广的部门,例如工业和运输,同时有助于促进当地的能源主权。该项目需要投资350万欧元(360万美元),并通过Valtom和Waga Energy通过一家名为“ValtoménergieBioMéthane”的合资企业共同资助,该合资企业现在从RNG销售中赚取了收入。为了让居民参与并鼓励他们积极地为其地区的生态过渡做出贡献,去年还通过Enerfip Reenwable可再生能源融资平台开始了一项众筹活动,筹集了18万欧元(185,000美元)。此外,法国能源机构Ademe提供了339,000欧元(35万美元)的赠款,而Caissedesdépôts通过该国的Ecocité倡议捐款60,000欧元(62,000美元)。该项目标志着欧洲的第一个,是升级生物废物的整体努力的一部分,自2019年以来由Valtom率领。结果,生物废物分别收集并发送到沼气工厂生产RNG来加油加油,从而为当地规模提供了一个切实的循环经济的例子!
The objective of this study was to develop hybrid nanoparticles (HNCs) from two monomers, methyl methacrylate (MMA) and butylacrylate (BA), using miniemulsion polymerization method in the presence of Algerian Montmorillonite (AMMT), and different types of surfactants, such as the double-chain cationic didodecyldimethylammonium bromide (DDAB),undecafluoro n-戊酰十氧基乙烯醚(C 5 F 11(EO)10)和混合表面活性剂系统(FSO-100/DDAB)。少见研究,尤其是关于获得去角质杂交纳米颗粒的可能性。在这项研究中,优化了聚合反应的几个参数,并允许得出结论: MMA-CO BA,c)用于采条微型乳化聚合,修饰的MMT充当表面活性剂,并构成了粘土交给粘土的交流,并稳定了微型乳化剂的粒子 - 溶剂界面。粘土的百分比越高,较不稳定的是微型乳液,而其多分散性越高,d)最稳定的纳米颗粒是用AMMT-HTA +重量为0.5%获得的,这是去角质纳米复合材料的特征。添加2%的N六烷烷(N-HD)导致尺寸降低了50%,表明该化合物在微乳液中稳定颗粒的有效性。