防止阳极和阴极接触,同时允许离子通过。5,8 氢氧化锂 (LiOH) 和碳酸盐 (Li 2 CO 3 ) 在锂离子电池阴极材料的生产中起着至关重要的作用。虽然两种锂化合物都可以使用,但氢氧化物形式具有一些优势。氢氧化锂是长续航里程汽车电池中使用的高镍阴极材料的首选,因为它具有更高的填充密度、更好的结晶度、结构纯度,并且可以在较低的合成温度下使用。9 氢氧化锂可以从盐水和矿石中提取。10 从锂辉石等矿石中提取需要多个步骤,首先要将原料矿物粉碎和研磨。由于 α-锂辉石具有非常强的化学抗性,因此必须通过在 1100°C 的回转窑中加热将其转化为热力学上不太稳定的 β-锂辉石。该步骤之后,通常会在 250°C 下用浓硫酸 (H 2 SO 4 ) 焙烧 b-锂辉石,生成硫酸锂 (Li 2 SO 4 )。10 根据所用的工业工艺,可能需要进一步的步骤,这些步骤可能在细节上有所不同,但通常包括浸出先前的
(图中的虚线4b)。适合背景提取的PDF(图4B)返回非常相似的晶格参数,液体和气相减少后的NP尺寸为2.3±0.1 nm(表S1)。这提供了令人信服的证据,表明在70°C的环己烷中,PTAL中的Pt氧化物相完全降低,并且反应环境不影响PT粒径,PT粒径仍然非常接近由茎在原始(未修复)PTAL催化剂上评估的分布中心(图。1)。也适用于PTAL(R)(图S7),尽管平均NP大小远大于降低的PTAL(表S1)。还原催化剂的PDF模式(图4b),其中短期顺序在很大程度上由散装FCC PT决定
深色发酵(DF)是一种生物学过程,能够从有机废物中产生氢气,这可以作为生物精炼厂中的基础发挥关键作用。,但仍需要优化DF的流体动力条件以增强气体液传质,从而减少了可溶性氢的自抑制作用。质量转移增强受到限制,因为对微生物的液压应力必须受到限制,并且该过程的经济可持续性必须保持。最近的结果表明,在层流和湍流方案之间的过渡区域中,DF增强了。为了更好地了解该制度中的3D流体动力特征,开发了一种改进的光学轨迹技术并将其应用于配备双型物件设备的2-L生物反应器。所提出的方法旨在同时使用三个摄像机来监测多达十个颗粒作为示踪剂的轨迹,但也能够在每个相机的2D图像中提供颗粒的实时位置,以最大程度地减少治疗后时间。应用了该方法,包括立体摄像机校准,实时和后处理以重建3D轨迹,并针对2D-PIV和CFD数据进行了验证。达成了良好的一致性,但是由于粒径,很难捕获附近壁和叶轮的区域。结果表明,与单个粒子作为示踪剂相比,使用五个颗粒的工作能够减少3-4的测量时间,而较高数量的示踪剂增加了伪像的镜头。
C末端结合蛋白(CTBP)是对癌症和炎症重要的保守转录阻遏物。 在转录共同调节剂中独特的CTBP具有功能性脱氢酶结构域。 由于多种恶性肿瘤显示CTBP水平升高,因此已经开发了针对该脱氢酶结构域的CTBP抑制剂。 尽管CTBPS脱氢酶功能对转录调节的重要性尚不清楚,但几项研究取决于CTBP抑制剂。 体外实验已经证实了这些化合物与CTBP活性位点的结合,但是缺乏特异性的证据。 为了解决这个问题,我们用MTOB或4-CL-HIPP处理了WildType和CTBP1,2个双基因敲除J774.1细胞并进行了RNA-Seq。 我们观察到,两种抑制剂都会引起不同的转录变化,表明非重叠的作用方式。 此外,在CTBP1/2双基因敲除细胞中观察到了任何一种抑制剂引起的大多数变化,提示靶向效应。 我们假设那些CTBP脱氢酶抑制剂对CTBPs缺乏特异性,并强调使用这些抑制剂从研究中推断出的发现进行仔细的重估。C末端结合蛋白(CTBP)是对癌症和炎症重要的保守转录阻遏物。在转录共同调节剂中独特的CTBP具有功能性脱氢酶结构域。由于多种恶性肿瘤显示CTBP水平升高,因此已经开发了针对该脱氢酶结构域的CTBP抑制剂。尽管CTBPS脱氢酶功能对转录调节的重要性尚不清楚,但几项研究取决于CTBP抑制剂。体外实验已经证实了这些化合物与CTBP活性位点的结合,但是缺乏特异性的证据。为了解决这个问题,我们用MTOB或4-CL-HIPP处理了WildType和CTBP1,2个双基因敲除J774.1细胞并进行了RNA-Seq。我们观察到,两种抑制剂都会引起不同的转录变化,表明非重叠的作用方式。此外,在CTBP1/2双基因敲除细胞中观察到了任何一种抑制剂引起的大多数变化,提示靶向效应。我们假设那些CTBP脱氢酶抑制剂对CTBPs缺乏特异性,并强调使用这些抑制剂从研究中推断出的发现进行仔细的重估。
氢气是石化工业的原料,也可用作能源载体。目前,欧盟 96% 的氢气由天然气生产,这一过程会排放大量二氧化碳。捕获并储存二氧化碳后,产生的氢气被称为低碳氢气。另一种生产氢气的技术是水电解,即将水分解为氢气和氧气。如果电解由可再生电力驱动,则不会产生二氧化碳排放,产生的氢气被称为可再生氢气。低碳和可再生氢气均可在欧盟能源转型中发挥关键作用,取代碳密集型行业的化石燃料。它们可用于钢铁生产、化学工业和运输,以及工业和住宅供热和发电。
跨不同能量情景的氢,为吸收氢的结果范围。虽然许多场景包括运输部门中的一些氢,但根据情景设计的重点,其他领域中氢的吸收有所不同。更重要的是,审查发现了野心水平之间的相关性(例如脱碳或可再生能源整合目标)和场景结果中氢的贡献。鉴于氢可以改变能源系统的潜力,因此其在全球能量情景中的贡献的变化令人惊讶。hanley等人。17确定了氢气流行率的某些趋势,他们没有探讨详细范围的原因。从这个角度来看,我们评估了氢作为能量系统的贡献的潜力,并检查了在全球能量情景中使用的方法,以了解氢在氢方面的差异。我们专注于著名机构产生的全球能源情景,因为这些方案通常是最多的。考虑了整个方案开发过程,包括概述,模型构建和输入数据。基于此分析,我们建议对能量情景的一些最佳实践,以便它们可以提供最佳的见解,并正确量化氢等能量技术的潜力。第2节提供了氢作为能量载体的概述。第3节提供了来自12项全球研究的情景中氢气率的详细信息。在第4节中,讨论了方案之间有不同结果的原因。最后,第5节中提供了一些方案开发中最佳实践的结论和建议。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月3日发布。 https://doi.org/10.1101/2024.05.28.596179 doi:biorxiv preprint
环境中纳米塑料(NP)和微塑料(MP)的存在被认为是全球规模的问题。由于其疏水性和较大的特异性表面,NP和MP可以吸附其他污染物,作为多环芳烃(PAHS),并调节其生物利用度和危害。成年斑马鱼暴露3和21天,至:(1)0.07 mg/l NP(50 nm),(2)0.05 mg/l MPS(4.5μm),(3)MPS,带有水的油的吸附油化合物(WAF)的浓度(WAF)的浓度(WAF),均与含有戒指的香油(MPS-WAF),(MPS-WAF),(MPS-WAF),(4)MPS(4)MPS(4) (MPS-B(A)P),(5)5%WAF和(6)21μg/L B(a)p。在接近微绒毛的肠腔中可以看到类似NP的电义颗粒。MP在肠腔中大量发现,但未内化到组织中。21天后,NPS引起CAT的显着下调,GPX1A和SOD1的上调,而MPS上调CYP1A并增加了肝脏真空的患病率。在ill中未观察到组织病理学改变。在这项研究中,受污染的MPS并未增加斑马鱼的PAH水平,但结果强调了塑料颗粒的潜在差异影响,这取决于其大小,因此必须紧急解决真实环境NP和MPS的生态毒理学影响。
Derrick Kwadwo Danso,BaptisteFrançois,Benoit Hingray,Arona Diedhiou。使用动态编程和敏感性分析评估水力发电的灵活性,以在西非整合太阳能和风能。与加纳Akosombo水库的插图。清洁工生产杂志,2021,287,pp.125559。10.1016/j.jclepro.2020.125559。hal-03370754
摘要:本出版物研究了泵送水电存储和电池储能系统的协调运营,以提高利用能力。虽然泵送的水电储藏可提供较高的存储容量,但响应时间较慢,但电池储能系统的容量较低,但响应时间更快。结合两者的混合系统可以利用协同作用。开发了一种混合企业线性编程模型,以描绘德国市场中这两个系统的协调使用。所提出的方法也适用于其他区域市场以类似方式交易的能源和平衡服务。在此型号中,泵送的水电存储在现货市场中运行,并提供自动频率恢复储备,而电池储能系统则提供频率遏制储备。该模型考虑了两种存储类型中降解效应所引起的成本。结果表明,与两个存储系统的独立运营相比,通过协调增加了10.05%。可以通过更有效地使用功率容量,尤其是电池能量系统的功率来实现此附加值。