将氢(H 2)存储为能量载体,需要开发用于提高传统储存溶液的效率和安全性,例如压缩气体(350-700 bar)和低温液体(20-30 K)。[1]固态氢存储是开发的一种替代方法,可以通过金属 - 水流中的化学键或通过物理吸附(物理吸附)到达多孔材料表面的物理吸附(物理吸附),以达到涉及较低储存压力的技术储存密度。[2]在固态方法中,物理吸附显示了更快的动力学,用于充电和放电和完全可逆性。[3,4]使用吸附剂进行氢存储需要低温温度(冷冻吸附),通常在液氮的沸点周围,即77 K,以实现与高压或液态氢罐可比的实用重量和大量能力。[5–11]
颗粒水凝胶作为脆性屈服应力流体G.B.汤普森1,2*,J。Lee1*,K.M。Kamani 1,N。Flores-Velasco 1,S.A。Rogers 1,B.A.C。 Harley 1,2,3 1 Dept. 化学和生物分子工程2 Carl R. Woese基因组生物学研究所3伊利诺伊大学Urbana-Champaign Urbana伊利诺伊大学癌症中心,伊利诺伊州61801 *共同先生的作者通讯作者:B.A.C. 哈雷部 of Chemical and Biomolecular Engineering Cancer Center at Illinois Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign 110 Roger Adams Laboratory 600 S. Mathews Ave. Urbana, IL 61801 Phone: (217) 244-7112 Fax: (217) 333-5052 e-mail: bharley@illinois.eduKamani 1,N。Flores-Velasco 1,S.A。Rogers 1,B.A.C。Harley 1,2,3 1 Dept. 化学和生物分子工程2 Carl R. Woese基因组生物学研究所3伊利诺伊大学Urbana-Champaign Urbana伊利诺伊大学癌症中心,伊利诺伊州61801 *共同先生的作者通讯作者:B.A.C. 哈雷部 of Chemical and Biomolecular Engineering Cancer Center at Illinois Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign 110 Roger Adams Laboratory 600 S. Mathews Ave. Urbana, IL 61801 Phone: (217) 244-7112 Fax: (217) 333-5052 e-mail: bharley@illinois.eduHarley 1,2,3 1 Dept.化学和生物分子工程2 Carl R. Woese基因组生物学研究所3伊利诺伊大学Urbana-Champaign Urbana伊利诺伊大学癌症中心,伊利诺伊州61801 *共同先生的作者通讯作者:B.A.C.哈雷部of Chemical and Biomolecular Engineering Cancer Center at Illinois Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana-Champaign 110 Roger Adams Laboratory 600 S. Mathews Ave. Urbana, IL 61801 Phone: (217) 244-7112 Fax: (217) 333-5052 e-mail: bharley@illinois.edu
4请注意,相关欧盟法规的当前草案需要同时规则的两个例外:在5年的过渡期间允许每月平衡,当价格低于一定门槛时,允许购买网格。但是,本文从这些详细规则中摘要,并着重于“理想”同时标准的效果。5此转换效率以及对氢在本文档中的能量含量的所有参考是指氢的较低加热值(33.3 kWh H2 /kg H2)。
方法:在麻醉的雄性新西兰白兔子(n = 44)的角膜中诱导碱性燃烧(直径8毫米),将浸入1M NaOH的滤纸持续60 s。立即用平衡的盐溶液冲洗角膜后,伤口接到:(1)未治疗; (2)AM移植;或(3)基于加载AM蛋白提取物(AME)的金硫代酸盐的动态透明质酸水凝胶;或(4)带有相同AME的物理交联的眼水凝胶插入物。对侧未受伤的眼睛用作对照。在显微照片中评估了伤口区域和愈合角膜的比例。此外,通过苏木精 - 欧生和Masson的三色染色评估了角膜组织学,检查上皮和基质厚度,内皮层以及早期(第2天)和愈合阶段的早期(第2天)(第2天)。
摘要 氢经济目前正受到越来越多的关注,部分原因是通过电解吸收风能和太阳能生产峰值的可能性。这种方法的一个根本挑战是综合电力-氢系统各部分的利用率低。为了评估产能利用率的重要性,本文介绍了一种新型程式化数值能源系统模型,该模型结合了电力和氢气生产、输送和储存的主要要素,包括电解产生的“绿色”氢气和天然气重整与二氧化碳捕获和储存 (CCS) 产生的“蓝色”氢气。平衡可再生能源与电解会导致电解器、氢气管道和储存基础设施或电力传输网络的利用率低,具体取决于电解器是否与风电场或需求中心位于同一位置。蓝氢场景面临类似的限制。高可再生能源份额导致传统 CCS 的二氧化碳捕获、运输和储存基础设施利用率低,以及实现灵活电力和氢气生产的新工艺(气体切换重整)的氢气传输和储存基础设施利用率低。总之,绿氢和蓝氢都可以促进风能和太阳能的整合,但与低产能利用率相关的成本侵蚀了大部分预期的经济效益。
能源的历史是从效率低下,更脏,昂贵的选择中逐步替换,更清洁,更便宜,更有表现的燃料。磨坊和机器取代了体力劳动,最近电力取代了煤油,该煤油取代了鲸油以进行照明,煤炭代替了工业和供暖建筑物的木材。但是气体呢?一个世纪前,城镇天然气是通过燃烧的煤炭,生产可乐和甲烷和氢的混合物制造的,以及沿途的有毒气体,例如CO和其他污染物。后来,发现了大量的天然气储量(主要由甲烷组成),既便宜又清洁,因此我们停止了制造城镇天然气。由于甲烷的效用,丰富性和负担能力,它几乎用于社会的每个部门。今天,天然气用于加热,烹饪,发电,以及制造诸如化学物质和塑料之类的材料。
人们正在付出前所未有的努力来以循环经济的方式开发从生物资源中生产氢气,但这些措施的实施仍然很少。当今的挑战与价值链短缺、缺乏大规模生产基础设施、成本高以及当前解决方案效率低下有关。在此,我们报告了一种从纤维素纸浆中生产氢气的路线,该路线将生物质分馏和气化集成到生物精炼方法中。软木锯末经过甲酸有机溶剂处理以提取纤维素,然后进行蒸汽气化。生产出浓度为 56.3 vol% 且产量为 40 g H2/kg 纤维素的高纯度富氢合成气。焦炭气化具有生产游离焦油合成气的优势,从而降低了清洁成本并缓解了下游问题。对氢价值链上质量和能量平衡的全面评估显示,氢气生产的效率为 26.5%,能量需求为 111.1 kWh/kg H2。通过生物精炼方法优化溶剂回收和其他成分作为增值产品的价值提升将进一步改善工艺流程并促进其工业化发展。
Anish Ghimire,Luigi Frunzo,Francesco Pirozzi,Eric Trapie,RenaudEscudié等。有机生物量的深色发酵生物氢生产的综述:过程参数和副产品的使用。Applied Energy,2015,144,pp.73-95。10.1016/j.apenergy.2015.01.045。hal-01164829
随着海上能源格局向可再生能源过渡,已退役或废弃的石油和天然气基础设施可以在循环经济的背景下重新利用。例如,石油和天然气平台利用海上风力发电对海水进行淡化和电解,为生产氢气 (H 2 ) 提供了机会。然而,由于 H 2 的储存和运输可能具有挑战性,本研究建议将这种 H 2 与储存在枯竭的油藏中的二氧化碳 (CO 2 ) 发生反应。从而,在油藏中产生更易于运输的能源载体,如甲烷或甲醇。本文在 Aspen Plus 中对北海 Goldeneye 油藏进行了新的热力学分析。对于 Goldeneye 来说,它在满负荷的情况下可以储存 30 Mt 的二氧化碳,如果连接到 4.45 GW 的风电场,它每年有可能生产 2.10 Mt 的甲烷,并从电网中的风能中减少 4.51 Mt 的二氧化碳。