这项研究的主要目的是为组织工程应用开发经济,环保且可延展的生物材料。水和甘油已被用作明胶水凝胶合成的溶剂。这种溶剂混合物导致具有改善热性能的生物材料。确实,达到了16°C的热过渡温度。此外,为了增强机械性能,核黄素被用作交联剂。使用紫外线辐射开始化学交联步,以获得明胶链的核黄素自由基聚合,因此,明胶水凝胶的流变学特性得到了改善。因此,明胶 - 紫外线血凝胶水凝胶显示出良好的肿胀和增加的机械性能,获得了一种新颖的材料,用于药物输送和医疗用途。版权所有©2019 VBRI出版社。关键字:组织工程,生物聚合物,交联。简介
癌症免疫周期为抗癌免疫反应中的一系列事件提供了一个框架,该事件是由T细胞介导的肿瘤细胞杀死引发的,这导致抗原表现和T细胞刺激。当前针对乳腺癌的免疫调节疗法通常与短持续时间相关,靶向作用部位较差以及严重的副作用。水凝胶及其细胞外基质的特性,可调的特征和多样化的生物活性性,引起了人们对局部传递免疫调节剂和细胞的能力的显着关注,从而提供了免疫调节性的微型微环境,以促进,激活和扩展宿主免疫细胞。本综述着重于水凝胶平台的设计考虑因素,包括聚合物主链,交联机制,物理化学特性和免疫调节成分。突出显示了各种水凝胶系统在乳腺癌治疗和组织再生中的免疫调节作用和治疗结果,包括用于免疫调节剂输送的水凝胶库,用于细胞输送的水凝胶支架以及依赖于固有材料的免疫调节水凝胶。最后,讨论了当前系统和未来的免疫调节水凝胶方向的挑战。
DOI: https://dx.doi.org/10.30919/es1200 Anti-swelling Zwitterionic Nanocomposite Hydrogels with Biocompatibility as Flexible Sensor for Underwater Application Zhicheng Jiang, 1,2 Ruicheng Sha, 1 Yunbo He, 1 Mengshuang Wang, 1 Wenjing Ma, 3 Shuting Gao, 2 Mengni Zhu,1 Yue Li,1 Mengying Ni 1和Min Xu 1,*摘要水下活动的增加驱动了对水下柔性传感器的需求,这些传感器可以实时检测到人类和环境的各种信号,以提高工作效率并确保安全。但是,由于水中的水凝胶肿胀以及传感器的不友好性,水下传感器的制造仍然具有挑战性,这对用户和应用程序环境构成了重大风险。这里是一种基于水凝胶的传感器,由聚[2-(甲基丙烯氧基)乙基]二甲基 - (3-硫丙基丙基)氢氧化铵和细菌纤维素纳米纤维组成,具有自我粘附,生物相容性,生物相容性,以及使用环境友好友好的方法制造。zwitterionic官能团之间的静电相互作用(带正电荷的-r 3 n +组和带负电荷的 - SO 3-组)在水生环境中赋予水凝胶具有出色的抗静止行为。由于这些特征,水凝胶传感器能够监测空气和水下环境中的运动。基于水凝胶传感器,开发了一个智能通信系统,以促进水中的信息传输。此外,水凝胶传感器的出色生物相容性突出了其对用户和环境的安全性,展示了其对电子皮肤的巨大希望。因此,具有抗静止功能的生物相容性水凝胶传感器为促进可穿戴设备的开发提供了有希望的途径。
摘要:以其灵活性,生物相容性和电导率而闻名的导电水凝胶在医疗保健,环境监测和软机器人技术等领域中发现了广泛的应用。3D打印技术的最新进步改变了导电水凝胶的制造,为传感应用创造了新的机会。本综述概述了3D打印的导电水凝胶传感器的制造和应用的进步。首先,简要审查了导电水凝胶的基本原理和制造技术。然后,我们探索用于导电水凝胶的各种3D打印方法,讨论它们各自的优势和局限性。审查还总结了3D打印导电水凝胶传感器的应用。此外,突出显示了3D打印导电水凝胶传感器的观点。本评论旨在使研究人员和工程师对当前3D打印的导电水凝胶传感器的景观有所了解,并激发这个有前途的领域的未来创新。
使用间充质干细胞(MSC)的抽象细胞移植已成为修复和再生受伤或受损器官的一种有希望的方法。但是,移植后MSC的生存和保留仍然是一个挑战。因此,我们研究了MSC的共转移和脱细胞外基质(DECM)水凝胶的疗效,这些水凝胶具有高的细胞相容性和生物相容性。通过酶消化的细胞猪肝支架来制备DECM溶液。它可以在生理温度下凝胶并形成多孔的纤维微结构。MSC在没有细胞死亡的水凝胶中在三维中扩展。与二维细胞培养物相比,在水凝胶中培养的MSC表现出增加的肝细胞生长因子(HGF)和肿瘤坏死因子诱导因子诱导基因6蛋白(TSG-6)的分泌增加,这两种蛋白(TSG-6)是主要的抗炎和抗纤维化旁帕氨酸因子MSCS的主要抗纤维化和抗纤维化旁皮因子。体内实验表明,与没有水凝胶的那些相比,MSC与DEMM水凝胶的共同植入术提高了植入细胞的存活率。MSC还表现出在二丁丁素(DBTC)诱导的大鼠胰腺炎模型中改善胰岛组织炎症和纤维化的治疗作用。将DEMM水凝胶与MSC的组合使用是一种新的策略,是克服使用MSC的细胞治疗挑战的新策略,可用于治疗临床环境中的慢性炎症性疾病。
在基于SESAM的模式模式锁定的半导体激光Yu-Hsin Hsu Hsu(国家Yang-Ming Chiao Tung University)的谐波模式锁定中,谐波模式锁定的动态演变谐波模式锁定的动态演变 and Photoluminescence Property of Gold Clusters with Bis(benzo[b]phosphindole)ethane Ligand Teppei Yahagi (Osaka Metropolitan University) Synthesis and Optical Properties of Gold Nanocluster with Organic Radical Ligand Kosei Hayashi (Osaka Metropolitan University) Numerical investigation of launch characteristics in optical vortex laser induced forward transfer Mamoru Tamura (Osaka University) Helical excitations in superfluid helium Yosuke Minowa (Kyoto University) Fabrication of Hydrogel Fibers with Helical Structure via Vortex Laser Photopolymerization Toward Chiral Tissue Engineering Zhuying Zhang (Osaka University) Development of optical manipulation of nanoscale objects for controlling cellular activity Tatsunori Kishimoto (Toyohashi University技术)的两光子制造微观结构由飞秒光涡流横梁Yoshihisa Matsumoto(大阪大都会大学)谐波模式锁定的动态演变 and Photoluminescence Property of Gold Clusters with Bis(benzo[b]phosphindole)ethane Ligand Teppei Yahagi (Osaka Metropolitan University) Synthesis and Optical Properties of Gold Nanocluster with Organic Radical Ligand Kosei Hayashi (Osaka Metropolitan University) Numerical investigation of launch characteristics in optical vortex laser induced forward transfer Mamoru Tamura (Osaka University) Helical excitations in superfluid helium Yosuke Minowa (Kyoto University) Fabrication of Hydrogel Fibers with Helical Structure via Vortex Laser Photopolymerization Toward Chiral Tissue Engineering Zhuying Zhang (Osaka University) Development of optical manipulation of nanoscale objects for controlling cellular activity Tatsunori Kishimoto (Toyohashi University技术)的两光子制造微观结构由飞秒光涡流横梁Yoshihisa Matsumoto(大阪大都会大学)and Photoluminescence Property of Gold Clusters with Bis(benzo[b]phosphindole)ethane Ligand Teppei Yahagi (Osaka Metropolitan University) Synthesis and Optical Properties of Gold Nanocluster with Organic Radical Ligand Kosei Hayashi (Osaka Metropolitan University) Numerical investigation of launch characteristics in optical vortex laser induced forward transfer Mamoru Tamura (Osaka University) Helical excitations in superfluid helium Yosuke Minowa (Kyoto University) Fabrication of Hydrogel Fibers with Helical Structure via Vortex Laser Photopolymerization Toward Chiral Tissue Engineering Zhuying Zhang (Osaka University) Development of optical manipulation of nanoscale objects for controlling cellular activity Tatsunori Kishimoto (Toyohashi University技术)的两光子制造微观结构由飞秒光涡流横梁Yoshihisa Matsumoto(大阪大都会大学)and Photoluminescence Property of Gold Clusters with Bis(benzo[b]phosphindole)ethane Ligand Teppei Yahagi (Osaka Metropolitan University) Synthesis and Optical Properties of Gold Nanocluster with Organic Radical Ligand Kosei Hayashi (Osaka Metropolitan University) Numerical investigation of launch characteristics in optical vortex laser induced forward transfer Mamoru Tamura (Osaka University) Helical excitations in superfluid helium Yosuke Minowa (Kyoto University) Fabrication of Hydrogel Fibers with Helical Structure via Vortex Laser Photopolymerization Toward Chiral Tissue Engineering Zhuying Zhang (Osaka University) Development of optical manipulation of nanoscale objects for controlling cellular activity Tatsunori Kishimoto (Toyohashi University技术)的两光子制造微观结构由飞秒光涡流横梁Yoshihisa Matsumoto(大阪大都会大学)and Photoluminescence Property of Gold Clusters with Bis(benzo[b]phosphindole)ethane Ligand Teppei Yahagi (Osaka Metropolitan University) Synthesis and Optical Properties of Gold Nanocluster with Organic Radical Ligand Kosei Hayashi (Osaka Metropolitan University) Numerical investigation of launch characteristics in optical vortex laser induced forward transfer Mamoru Tamura (Osaka University) Helical excitations in superfluid helium Yosuke Minowa (Kyoto University) Fabrication of Hydrogel Fibers with Helical Structure via Vortex Laser Photopolymerization Toward Chiral Tissue Engineering Zhuying Zhang (Osaka University) Development of optical manipulation of nanoscale objects for controlling cellular activity Tatsunori Kishimoto (Toyohashi University技术)的两光子制造微观结构由飞秒光涡流横梁Yoshihisa Matsumoto(大阪大都会大学)
抽象的常规光子设备具有设计依赖性的静态光学特性,包括材料的折射率和几何参数。但是,它们仍然对应用具有有吸引力的光学响应,并且已经在各个领域的设备中被利用。水凝胶光子学已通过为外部刺激提供主要可变形的几何参数而成为活性光子体领域的一种有希望的解决方案。在过去的几年中,已经进行了各种研究以获得具有可调光学特性的刺激响应光子设备。在此,我们关注基于水凝胶的光子学和水凝胶的微/纳米化技术的最新进步。特别是,用于水凝胶光子设备的制造技术被归类为膜的生长,光刻术(PL),电子束光刻(EBL)和纳米印刷光刻(NIL)。此外,我们还提供了对可变形水凝胶光子学的未来方向和前景的见解,以及它们的潜在实际应用。
摘要。这项研究的目的是开发创新的损害响应性细菌基于细菌的自我修复纤维(以下称为生物纤维),可以将其掺入混凝土中以同时启用两个功能:(1)裂纹桥接功能以控制裂纹生长和(2)发生裂纹时发生裂纹愈合功能的裂纹功能。生物纤维由承载核心纤维,含细菌水凝胶的鞘和外部不渗透应变反应性壳涂层组成。即时浸泡制造过程与多个含有含细菌的,亲水性的前聚合物和交联试剂的储层一起使用,以开发生物纤维。亚硫酸钠用作前聚合物,通过核纤维上的离子交联产生钙藻酸盐水凝胶。在水凝胶中掺入了脂肪菌的休眠细菌(孢子)作为自我修复剂。然后,将不可渗透的聚合物涂层应用于水凝胶涂层的核纤维。使用聚苯乙烯和聚乳酸的聚合物混合物制造了不可渗透的应变反应性壳涂层材料。在这项研究中,高钙钙酸钙的高肿胀能力提供了微生物诱导的碳酸钙沉淀(MICP)化学途径所需的水。应变反应不足的涂层在混凝土铸造过程中提供了足够的柔韧性,以保护孢子和藻酸盐,并在破裂和足够的应力应变行为之前,以在发生裂缝时赋予损害反应性以激活MICP。研究了开发的生物纤维的行为,水凝胶的肿胀能力,壳涂层的不渗透性,孢子铸造的生存能力和MICP活性。
材料中,CNCs的排列起着至关重要的作用。到目前为止,已证明有几种有效的方法来排列CNCs,例如使用铸造蒸发法[6]、剪切力[7]、磁场[8]和电场。[9]除了上述方法所需的复杂装置或CNC薄膜的固有脆性外,最近出现了一种基于液体行为辅助策略的排列CNCs的新方法。[10]使用动态水凝胶体系来驱动CNCs的排列,其中CNCs的取向由外力产生。当纳米材料在空气干燥后相对位置固定时,就得到了颜色可调的CNC混合薄膜。另一方面,为了克服从天然原料中分离CNCs的问题,例如苛刻的条件或高能耗,[11]我们开发了一种新的可回收、选择性的碱性高碘酸盐氧化方法,从而可以高产率地制备PO-CNCs。 [12] 然而,PO-CNCs 上羧基含量相对较少,削弱了水凝胶前体中 PO-CNCs 的稳定性,并且由于许多其他溶解化合物的存在,可能导致 PO-CNCs 聚集,这也给将 CNCs 均匀嵌入潜在光学器件材料带来了普遍挑战。由于水凝胶中 CNCs 的取向依赖于剪切力,因此要求水凝胶具有较高的拉伸性和足够的韧性。由于缺乏有效的能量耗散机制,传统水凝胶通常机械强度差、拉伸性低。[13] 因此,人们已采用各种策略(包括静电相互作用 [14] 双网络结构 [15] 滑环连接 [16] 和疏水缔合 [17])进行交联和能量耗散,以提高水凝胶的性能。为了简化CNCs与聚合物基质之间的相互作用,避免所得光学材料中过多的变量,一种通过共价键交联的聚丙烯酰胺(PAAm)水凝胶具有高透明度和适用的机械性能等优势,是通过液体行为辅助法对PO-CNCs进行取向的有希望的候选材料。[18]中性水凝胶前体溶液可使PO-CNCs稳定存在。此外,其他光学材料,如金纳米棒(GNR),也可以适应这种水凝胶体系,其中表面等离子体共振(SPR)将诱导可见光区域的光吸收。[19]因此,这种水凝胶
水凝胶的独特性质使得设计栩栩如生的软智能系统成为可能。然而,刺激响应型水凝胶仍然受到驱动控制有限的困扰。直接电子控制电子导电水凝胶可以解决这一难题,并允许与现代电子系统直接集成。本发明展示了一种具有高平面电导率的电化学控制纳米线复合水凝胶,可刺激单轴电化学渗透膨胀。该材料系统允许在仅 -1 V 的电压下精确控制形状变形,其中水凝胶本体的电容充电导致高达 300% 的单轴膨胀,这是由于每个电子离子对约 700 个水分子的进入引起的。该材料在关闭时会保持其状态,这对于电调谐膜来说是理想的选择,因为膨胀和中孔率之间的固有耦合使得能够通过电子控制渗透性以实现自适应分离、分馏和分布。用作电化学渗透水凝胶致动器,它们可实现高达 0.7 MPa 的电活性压力(1.4 MPa vs 干燥)和 ≈ 150 kJ m − 3 的工作密度
