作为喜马拉雅河流域之一的尼泊尔的卡利甘丹基河盆地(KRB)正在经历气候变化对水资源的严重影响。在这项研究中,使用缩小的CMIP6 GCM模型的未来气候预测通过开发水文模型土壤和水评估工具(SWAT)来评估气候变化对KRB水文状态的潜在影响。多站点验证方法用于解决盆地的高空间异质性。该模型的性能非常出色,在整个研究中都达到了一个非常好的排名,如校准和验证结果所证明的那样。在中间排放途径SSP245场景下,盆地的平均年温度预计将增加1.5°C,在远期前季季季节期间,最大上升幅度为2.8°C。在高排放途径SSP585方案中,预计平均年度温度将升高2.2°C,在未来的冬季,预期的最大上升幅度为4.3°C。降水预计将在所有未来的时间窗口中增加,而SSP585方案下的幅度较高。预计温度和降水升高的综合作用将增加河流的排出。具体而言,预计排放量将增加6%(在SSP245下)和12%(根据SSP585)为2025-49,为14%(SSP245下)和24%(在SSP585下)(ssp585下)(2050-74),以及23%(SSP245)和SSP585(SSP585585)的23%(ssp245),适用于20755-9555-99055-99。预计的变化表明,平均年平均排放的总体增加,在高排放情况下预期的增加。这些发现突出了气候变化对水平衡成分和KRB的水文状态的显着影响。
气候变化有望增加极端事件的频率和强度,例如干旱和洪水。评估气候变化对洪水量的影响对于更好地管理洪水灾害至关重要。使用洪水量代替洪水峰至关重要,因为后者集中在洪水事件中观察到的最高排放量,而洪水量也考虑了流动持续时间,这是对SUR圆形环境造成的危害的重要因素。本研究旨在评估气候变化对长期流量超过合成洪水阈值的洪水的总体影响。这些流程用于计算洪水存储,各种流量阈值从1403个北美集水区的大量样本中的年度最大排放量的第50%增加到95%。本研究还旨在评估集合方法的每个不确定性来源(气候模型,偏见校正方法和水文模型)对未来洪水量的贡献。结果表明,西部山区,大湖区和海事的洪水预计将减少,而北美大部分地区的洪水预计将增加。研究发现,气候模型对洪水量的确定性的差异最大,然后是水文模型。总的来说,这项研究为北美集水集提供了预计的洪水量变化,包括一个由两个RCP场景和四种不同复杂性的水文模型驱动的11个气候模型。这导致对未来洪水量的大型样本评估,这对政策制定者来说可能是有用的,可以在洪水风险管理中做出更明智的决策。
由农业部领导的“农业中的AI”项目包括精确耕作,作物识别(甚至发现非法植物)和质量预测。专注于植被跟踪,土壤水分监测和监测土地表面温度,森林覆盖率监测,可持续的森林管理和全面的水文管理
Manuel Scotland,Bruno Giamarco Cardin,Bernard-Jann-Jannin,生日和其他地方。水文海科学,2020,65(11),第1956– 1973页。
高海拔环境对气候变化特别敏感,阿尔卑斯山冰冻圈正受到非常迅速和强烈的影响。了解高海拔流域的水文响应对于管理水资源至关重要,特别是在当前气候变化的背景下,导致固体降水百分比降低、降水输入的时间重新分配和定量变化、温度升高以及夏季更持久的干旱条件。虽然剩余的冰川仍然能够确保足够的水供应,但冰川的减少速度现在非常快。自 19 世纪下半叶以来,全球范围内的山地冰川普遍退缩,例如在阿尔卑斯山,它们失去了最初面积的约三分之二,面积损失率自 2003 年以来不断加快。按照这种速度,冰川的水文缓冲作用将很快耗尽。过去几十年中特别温暖干燥的几年表明,冰川可以补偿稀缺的降雨,对相当大的盆地径流有显著的贡献,尤其是在夏季。这项研究的目的是了解不同的气候和冰川覆盖条件如何改变冰川集水区的水文响应,并分析水文响应的尺度依赖性及其对淡水可用性的影响。调查
摘要。在过去的3年中,在巴伐利亚的几条大河流中观察到了极端回流期及以后的严重浮游。洪水保护结构通常是根据100年的事件设计的,重新基于相对较短的观察时间序列的统计外推,同时忽略潜在的时间非平稳性。然而,未来的降水预测表明,极端降雨事件的频率和强度的增加以及季节性的变化。这项研究旨在检查气候变化对水文巴伐利亚水文中98个水文测量表的100年流量(HF 100)事件的影响。由区域单模型初始条件(Smile)组成的水文气候变化影响(CCI)建模链创建了单个模型。使用加拿大区域气候模型5的50个可能的成员大型合奏(CRCM5-LE)用于驱动水文模型WASIM(水平衡模拟模型)以创建水力毫米。结果,建立了每次研究的时间段1500年(50名成员×30年)的数据库进行极端价值分析(EVA),以说明基于年度最大值(AM)的强大估计HF 100的Hydro-Simile方法的好处,并根据HF的频率和幅度进行了A的频率和巨大的频率,以A的频率和幅度a的频率A的频率和大量的A a。 (RCP8.5)。因此,通过应用结果表明,使用1500 AM的经验概率,与使用普通的极值(GEV)分布的1000个样本的典型可用时间间隔大小为30、100和200年的估算相比,使用1500 AM的HF 100估算提供了明显的优势。
河流记录强调,平均而言,亚马逊典型地经历了极端的水文事件(即洪水或干旱)每十年一次(Marengo等,2011)。然而,自1990年以来,人们认为生活在亚马逊洪泛区中的社区的洪水风险因人口增长,快速的城市扩张,水文学变化以及水文周期的可能增强而增加(Davidson等,2012; Gloor等,2013; Filizola et al。; Filizola et al。,2014; bot eb eb ebre e n;破坏记录的洪水(例如在2009年,2012年,2014年和2015年)和2005年和2010年记录的两次“一个世纪”的干旱(Marengo和Espinoza,2016年)证明了这些事件对人类和自然系统的重大影响(Espinoza等,2013; Marengo等,2013; Marengo等,2013b,2013b)。仅2012年的洪水就影响了秘鲁洛雷托(Loreto)的202,676人,造成了造成生计损失的一个例子(IRFC,2012年)。
摘要。MIS 3在赤道以北和阿拉伯半岛以北的非洲环境条件长期以来一直有争议,这是由于数据稀缺和方法论上的警告。在本文中,我们比较了245个大陆水文记录和11个长而连续的大陆和海洋核心与IPSL一般循环模型的结果,讨论了北热带非洲,北部(地中海)非洲和阿拉伯半岛之间59至29 ka之间的水文变化。尽管通常有冰川的环境,但潮湿的条件已广泛扩大,为许多湖泊,河流和湿地提供了位置。我们研究的主要结果是表明,由于夏季季风降雨和冬季的地中海雨水,潮湿的状况比阿拉伯半岛更早,在阿拉伯半岛比非洲更为普遍。驱动MIS 3湿度的机制涉及全球冷却因子,例如温室浓度和冰量,这影响了可用的水分,轨道强迫,这会影响季风循环以及对大西洋子午倾覆循环状态(AMOC)的振幅和敏感性。
水温是水生生态系统的关键指标和天气。但是,绝大多数河流缺乏长期连续和完整的水温数据集。在这项研究中,通过将NARX(非线性自回旋网络与外源输入的非线性自回旋网络)和Air2Stream相结合的合奏模型用于重建每日的河水温度,以在欧洲最大的河流系统之一的奥德拉河盆地的27个水文站中为27个水文站重建。对于每个水文站,对NARX和AIR2Stream模型均经过校准和验证,并选择了表现良好的模型以重建1985年至2022年的每日河水温度。结果表明,通过组合Narx和Air2Stream结合使用杂种建模有望重建每日河水温度。根据重建的数据集,水温的年度和季节性趋势以及河流热浪的特征。结果表明,在过去40年中,年度水温显示出一致的变暖趋势,平均变暖率为0.315 c/十年。季节性河水温度表明,夏天的温暖速度更快,其次是秋季和春季,冬季河水温度显示出微不足道的变暖趋势。河河热波在奥德拉河盆地的频率,持续时间和强度增加,而27个水文站中有6个河流热浪被归类为“严重”和“极端”,这表明需要采取线索措施来减少气候变暖对水生系统的影响。2024中国地球科学大学(北京)和北京大学。此外,结果表明,空气温度是河流热浪的主要控制器,河流热浪往往会随着空气温度的变暖而增强。由Elsevier B.V.代表中国地球科学大学(北京)出版。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
