本研究项目旨在开发一种安全有效的大量 HCDS 液体处理方法。所提出的方法是一个两阶段过程,包括在水中直接水解 HCDS 液体,然后用氢氧化钾 (KOH) 水溶液对水悬浮液中的水解产物进行碱性裂解。在第一阶段,HCDS 液体直接在水中水解。所需的 HCDS 与水的重量比为 1:25。在水解过程中,反应温和,不会产生明显烟雾。在水中水解的液体 HCDS 水解沉积物的红外光谱中仅在 915 cm -1 处观察到一个新峰,这可能归因于簇中存在小的氧化硅分子。经确定,与在潮湿空气中形成的其他水解沉积物不同,在水中形成的液体 HCDS 水解沉积物在环境条件下易与碱性溶液反应,同时释放氢气。在第二阶段,加入 KOH 水溶液 (20 wt%) 以中和悬浮液。KOH 与 HCDS 所需的重量比为 2:1,最终 pH 值约为 12.6。残留沉积物在两小时内完全溶解。关键词:六氯乙硅烷、HCDS、水解沉积物、冲击敏感、处置。
及其复合材料在高湿度应用条件下仍然面临着磷水解的挑战。了解硅与 CaAlSiN 3 :Eu 2+ 之间的界面黏附力对于该材料的开发和应用具有重要意义。在本文中,首先通过实验测量和比较了硅/原始 CaAlSiN 3 :Eu 2+和硅/水解 CaAlSiN 3 :Eu 2+复合材料的力学性能,其中水解反应后复合材料的拉伸强度和杨氏模量都有所增加。然后,采用第一性原理密度泛函理论 (DFT) 计算在原子水平上研究硅分子在原始和水解 CaAlSiN 3 [0 1 0] 上的黏附行为。结果表明:(1)硅分子通过范德华(vdW)相互作用在原始 CaAlSiN 3 [0 1 0] 上形成弱吸附,而由于界面处形成了氢键,硅分子在水解 CaAlSiN 3 [0 1 0] 上的吸附强度大大增强;(2)瞬态计算表明,由于吸附能增加以及表面粗糙度增加,硅在水解 CaAlSiN 3 [0 1 0] 上的滑动能垒高于在原始 CaAlSiN 3 [0 1 0] 上的滑动能垒。总的来说,本文的研究结果可以指导 LED 封装中荧光粉的选择、储存和工艺,也有助于改善高湿度条件下使用的 LED 封装的可靠性设计。
在低温法中,不需要将催化淀粉水解的酶添加到淀粉悬浮液中。使用相同酵母物种的转基因 (GM) 菌株。转基因酵母菌株具有允许细胞产生 α-淀粉酶和葡糖淀粉酶并将这些酶附着到细胞表面膜外表面的基因。将转基因酵母细胞添加到加热到 80°C 的淀粉中,并在厌氧条件下维持以产生乙醇。
在低温法中,不需要将催化淀粉水解的酶添加到淀粉悬浮液中。使用相同酵母物种的转基因 (GM) 菌株。转基因酵母菌株具有允许细胞产生 α-淀粉酶和葡糖淀粉酶并将这些酶附着到细胞表面膜外表面的基因。将转基因酵母细胞添加到加热到 80°C 的淀粉中,并在厌氧条件下维持以产生乙醇。
摘要:在废水和城市河流中,曲霉科细菌富含多聚(乙二醇)(PET)微塑料,但宠物降级机制仍不清楚。在这里,我们通过结合显微镜,光谱,蛋白质组学,蛋白质建模和遗传工程来调查了废水分离株的comamonas testosteroni kf-1。与宠物膜上的较小凹痕相比,扫描电子显微镜显示出明显的宠物颗粒,导致30天培养中的小纳米颗粒(<100 nm)的丰度增加了3.5倍。红外光谱法主要捕获了碎片颗粒中的水解裂解。溶液分析进一步证明了PET低聚物BIS(2-羟基乙基)苯二甲酸酯的双重水解为生物可用的单体terephathathate。补充乙酸盐,一种常见的废水共覆盖物,促进了细胞生长和宠物碎片。仅检测到一种,仅检测到一种,这在仅乙酸盐和仅宠物的条件下发现。该水解酶结构的同源性建模说明了尽管序列不同,但类似于报道的PET水解酶的底物结合。缺乏该水解酶基因的突变体无能为力低聚物水解,宠物碎片降低了21%。基因的重新插入恢复了两个功能。因此,我们已经确定了在废水comamonas中降低宠物降解水解酶的本构生产,该水解酶可以用于塑料生物转化。关键词:塑料废物,废水,生物降解,显微镜,蛋白质组学,PET水解酶
摘要:在废水和城市河流中,曲霉科细菌富含多聚(乙二醇)(PET)微塑料,但宠物降级机制仍不清楚。在这里,我们通过结合显微镜,光谱,蛋白质组学,蛋白质建模和遗传工程来调查了废水分离株的comamonas testosteroni kf-1。与宠物膜上的较小凹痕相比,扫描电子显微镜显示出明显的宠物颗粒,导致30天培养中的小纳米颗粒(<100 nm)的丰度增加了3.5倍。红外光谱法主要捕获了碎片颗粒中的水解裂解。溶液分析进一步证明了PET低聚物BIS(2-羟基乙基)苯二甲酸酯的双重水解为生物可用的单体terephathathate。补充乙酸盐,一种常见的废水共覆盖物,促进了细胞生长和宠物碎片。仅检测到一种,仅检测到一种,这在仅乙酸盐和仅宠物的条件下发现。该水解酶结构的同源性建模说明了尽管序列不同,但类似于报道的PET水解酶的底物结合。缺乏该水解酶基因的突变体无能为力低聚物水解,宠物碎片降低了21%。基因的重新插入恢复了两个功能。因此,我们已经确定了在废水comamonas中降低宠物降解水解酶的本构生产,该水解酶可以用于塑料生物转化。关键词:塑料废物,废水,生物降解,显微镜,蛋白质组学,PET水解酶
MutT 同源物 1 (MTH1) 可从核苷酸池中去除氧化核苷酸,从而防止其掺入基因组,并降低基因毒性。我们之前曾报道 MTH1 是 O6-甲基-dGTP 水解的有效催化剂,这表明 MTH1 还可以清除核苷酸池中的其他甲基化核苷酸。我们在此显示 MTH1 可有效催化 N6-甲基-dATP 水解为 N6-甲基-dAMP,并进一步报道 dATP 的 N6-甲基化可显著增加 MTH1 活性。我们还观察到 MTH1 与 N6-甲基-ATP 的活性,尽管水平较低。我们发现 N6-甲基-dATP 会在体内整合到 DNA 中,与未注射 N6-甲基-dATP 的胚胎相比,微注射 N6-甲基-dATP 的 MTH1 敲除斑马鱼卵子发育而成的胚胎中 N6-甲基-dA DNA 水平升高就是明证。远亲脊椎动物的 MTH1 同源物中存在 N6-甲基-dATP 活性,这表明其具有进化保守性,也表明这种活性很重要。值得注意的是,在相关的 NUDIX 水解酶中,N6-甲基-dATP 活性是 MTH1 所独有的。此外,我们展示了 N6-甲基-dAMP 结合的人类 MTH1 的结构,揭示了 N6-甲基被容纳在疏水活性位点亚口袋内,这解释了为什么 N6-甲基-dATP 是良好的 MTH1 底物。据报道,DNA 和 RNA 的 N6 甲基化具有表观遗传作用并影响 mRNA 代谢。我们认为 MTH1 与腺苷脱氨酶样蛋白异构体 1 (ADAL1) 协同作用