某些微生物物种,例如粪肠球菌(E.粪便),肠杆菌科和白色念珠菌(白色念珠菌)与持续的感染有关,并可能导致牙髓衰竭。研究人员在18%的病例中发现了白色念珠菌,始终与其他细菌有关,在50%的病例中发现了粪肠球菌[4]。他们的持久性可以通过它们对抗微生物的耐受性和在营养缺乏的环境中生存的能力来解释[5]。随着时间的流逝,兼性细菌的比例减少和严格厌氧细菌的伴随增加是由于消耗氧和氧化减少潜力,可协作以维持这些细菌的生长[6]。被认为是强制性的。氢氧化钙是黄金标准材料,被广泛用作消毒和促进根尖的愈合。抗微生物活性直接归因于钙和羟基离子的解离和可用性,从而导致局部pH值增加。这些羟基离子具有破坏细胞质膜,结实的细菌蛋白和损害细菌DNA的能力[7]。
防止阳极和阴极接触,同时允许离子通过。5,8 氢氧化锂 (LiOH) 和碳酸盐 (Li 2 CO 3 ) 在锂离子电池阴极材料的生产中起着至关重要的作用。虽然两种锂化合物都可以使用,但氢氧化物形式具有一些优势。氢氧化锂是长续航里程汽车电池中使用的高镍阴极材料的首选,因为它具有更高的填充密度、更好的结晶度、结构纯度,并且可以在较低的合成温度下使用。9 氢氧化锂可以从盐水和矿石中提取。10 从锂辉石等矿石中提取需要多个步骤,首先要将原料矿物粉碎和研磨。由于 α-锂辉石具有非常强的化学抗性,因此必须通过在 1100°C 的回转窑中加热将其转化为热力学上不太稳定的 β-锂辉石。该步骤之后,通常会在 250°C 下用浓硫酸 (H 2 SO 4 ) 焙烧 b-锂辉石,生成硫酸锂 (Li 2 SO 4 )。10 根据所用的工业工艺,可能需要进一步的步骤,这些步骤可能在细节上有所不同,但通常包括浸出先前的
氢氧化铜是一种广谱铜杀菌剂,通常用于控制作物真菌和细菌性疾病。除了控制靶向病原体外,氢氧化铜还可能影响植物层生态系统中其他非靶向微生物。在施用杀菌剂后的四个时间点(在喷涂之前和5、10和15天之前),通过使用Illumina高通量测序技术和生物学工具研究了患病和健康的烟草微生物微生物对氢氧化铜应激的反应。结果表明,健康群体的微生物组社区比疾病组更受影响,而真菌群落比细菌群落更敏感。疾病组中最常见的属是替代植物,波兰菌,cladosporium,pantoea,ralstonia,pseudomonas和sphinghomonas;在健康组中,这些是替代人,cladosporium,symmetrospora,ralstonia和pantoea。喷涂后,健康和患病组的真菌群落的α多样性在5天后下降,然后显示出越来越多的趋势,健康组在15天时显着增加。健康和患病群体中细菌群落的α多样性在15天时增加,而健康的组有显着差异。在健康和患病的叶片的真菌群落中,替代品和cladosporium的相对丰度降低了,而波动脉症,stagonosporopsis,Symmetroppora,Epicoccum和Phoma的相对丰度则增加。Pantoea的相对丰度首先减少,然后增加,而Ralstonia,Pseudomonas和Sphingomonas的相对丰度首先增加,然后在健康和患病的叶片的细菌群落中减少。虽然氢氧化铜降低了致病真菌替代性和cradosporium的相对丰度,但它也导致有益细菌(例如放线菌和Pantoea)的降低,并增加了潜在的病原体,例如波里米亚和稳定性。用氢氧化铜处理后,患病组的代谢能力得到了改善,而健康组的代谢能力得到了显着抑制,随着应用时间的延长,代谢活性逐渐恢复。结果揭示了在氢氧化铜应激下,微生物群落组成和健康和患病的烟草的代谢功能的变化,为未来对植物层的微生态保护的研究提供了理论基础。
摘要:在这项研究中,通过电化学方法制备了装饰的NF底物上的钴型Ni(OH)2。使用扫描电子显微镜(SEM),原子力显微镜(AFM),能量分散光谱(EDS),X射线光电学光谱(XPS)和X射线衍射(XRD(XRD)),使用扫描电子显微镜(AFM),能量分散光谱(EDS),X射线散射光谱(EDS)描述了制备材料的表面特性,粗糙度,化学成分和晶体结构。此外,使用衰减的总反射傅立叶变换红外光谱(ATR-FTIR)和拉曼光谱的光学表征技术用于确认PANI的聚合。结果表明,Pani和双金属氧化物/氢氧化物在Bare NF的平坦骨架上凝聚。在碱性培养基中进行氧气演化反应(OER)的Co-Ni(OH)2 /Pani-NF的电催化性能,并且表现出出色的电催化活性,表现出了出色的电催化活性,其过电势为180 mV@20 MA CM-2,带有Tafel Slope 62 mV dec-2 dec-2。TOF(10-2)值确定为1.58 V时为2.49 s-1,突出了Co-ni(OH)2 / pani-nf在催化OER时的内在活性升高。使用计时度测定法(CA)进行24小时的稳定性测试,以完成100 mA cm -2和循环伏安法(CV),对200个循环(CV)进行200个循环,扫描速率为5 mV s -1。结果表明,即使在暴露于这些条件之后,该材料即使在长期接触这些条件后仍保持其电化学性能和结构完整性。这些发现强调了Co-ni(OH)2 /pani-NF是OER的有效且有前途的电催化材料,有可能通过水电解来提高氢产生的效率。
氧析出反应 (OER) 是所有使用水作为氢源的反应(如氢析出和电化学 CO 2 还原)的关键元素,而提供 OER 电催化剂上高活性位点的新型设计原理突破了它们实际应用的极限。本文证明了金簇负载在单层剥离层状双氢氧化物 (ULDH) 电催化剂上用于 OER 以在金簇和 ULDH 之间制造异质界面作为活性位点,同时伴随着活性位点氧化态的调节和界面直接 O O 偶联(“界面 DOOC”)。负载金簇的 ULDH 对 OER 表现出优异的活性,在 10 mA cm −2 时的过电位为 189 mV。 X射线吸收精细结构测量表明,从金团簇到超低分子量聚乙烯的电荷转移改变了三价金属离子的氧化态,而这些离子可以作为超低分子量聚乙烯上的活性位点。本研究采用高灵敏度的反射吸收红外光谱和调制激发光谱以及密度泛函理论计算相结合的光谱技术,表明金团簇和超低分子量聚乙烯界面处的活性位点通过界面DOOC促进了一种新的OER机制,从而实现了优异的催化性能。
摘要:灯笼在光电子中主要用于掺杂剂,以增强半导体设备的物理和光学特性。在这项研究中,灯笼(III)氢氧化物纳米颗粒(LA(OH)3 NP)用作聚乙基亚胺(PEI)功能化的氮(N)掺杂的石墨烯量子点(PEI- N GQD)的掺杂剂。通过绿色新颖方法在单一步骤中从LA(NO)3中制备3个NPS掺杂的PEI- nps-n GQD纳米复合材料,并以傅立叶转换红外光谱(FT-IR)为特征(TEM)。 在n型Si晶圆上沉积,洛杉矶(OH)3 nps掺杂的PEI- N GQDS纳米复合材料形成Schottky Diodes。 I -V特性和二极管的光响应是根据照明强度在0-110 mW cm -2和室温下的照明强度的函数。 发现二极管的直接拟合比和理想性因子降低,而Schottky屏障和串联电阻随着增强的照明而增加。 作为光电探测器,LA(OH)3 nps掺杂的PEI- N GQD/N-SI异质结的表现出3.9×10 - 3 AW - 1在22 mW cm-2下,在-0.3 V偏见下,在22 mW cm-2下,最大检测到8.7×10 8 JONES的最大检测,并在8.7×10 8 JONES中进行了研究。呈现LA(OH)3 NPS掺杂的PEI-N GQD的结构,电气和光电特性,表明这些纳米复合材料对于光电应用程序有望有望。通过绿色新颖方法在单一步骤中从LA(NO)3中制备3个NPS掺杂的PEI- nps-n GQD纳米复合材料,并以傅立叶转换红外光谱(FT-IR)为特征(TEM)。在n型Si晶圆上沉积,洛杉矶(OH)3 nps掺杂的PEI- N GQDS纳米复合材料形成Schottky Diodes。I -V特性和二极管的光响应是根据照明强度在0-110 mW cm -2和室温下的照明强度的函数。发现二极管的直接拟合比和理想性因子降低,而Schottky屏障和串联电阻随着增强的照明而增加。作为光电探测器,LA(OH)3 nps掺杂的PEI- N GQD/N-SI异质结的表现出3.9×10 - 3 AW - 1在22 mW cm-2下,在-0.3 V偏见下,在22 mW cm-2下,最大检测到8.7×10 8 JONES的最大检测,并在8.7×10 8 JONES中进行了研究。呈现LA(OH)3 NPS掺杂的PEI-N GQD的结构,电气和光电特性,表明这些纳米复合材料对于光电应用程序有望有望。关键字:稀土元素,灯笼(III)氢氧化物掺杂,石墨烯量子点,绿色方法,纳米复合二极管,光敏性
引入靶向PD-1/PD-L1的免疫检查点抑制剂已成为许多罐头的变革性疗法,但先天和获得的耐药性仍然是一个挑战(1)。重组细胞因子具有直接促进效应免疫细胞群体的募集和激活,有可能改善这些免疫学肿瘤的反应(2,3)。IL-12是由p35和p40亚基组成的异二聚体细胞因子,通过T和NK细胞上的IL-12RB1/IL-12RB2受体复合物发出信号,以诱导IFN-γ表达和Th1极化(4)。通过IFNγ上调的直接信号传导和间接效应的结合,IL-12可以诱导免疫细胞募集,共刺激,髓样细胞重极化和抗原表现(5)。重组IL-12作为单一药物或与其他免疫剂结合使用,在多种临床前模型中表现出了深刻的疗效,包括耐肿瘤对检查点阻断的肿瘤(6,7)。然而,静脉注射(i.v.)或皮下(S.C.),包括淋巴细胞减少症,肝毒性和胃肠道炎症,导致早期临床试验中2例患者死亡(8-10)。由于这些全身毒性,只能在临床研究中安全地施用0.3-1μg/kg范围内的非常低剂量的IL-12,从而限制了肿瘤的积累和功效(11,12)。因此,需要通过增加其相对肿瘤浓度,同时减少全身暴露和相关毒性来扩展IL-12和其他细胞因子的治疗窗口。
摘要:阴离子交换膜为更昂贵的质子交换膜燃料电池提供了有希望的替代品。但是,对阴离子交换膜中的氢氧化离子电导率知之甚少。在本文中,我们使用经典的分子动力学模拟来研究由乙烯 - 二乙烯基乙酸(EVA)制备的四种不同聚乙烯膜的结构和离子传输性能。我们检查了膜的微观结构,发现与具有广泛空腔分布的膜相比,腔尺寸分布狭窄的聚合物在氢氧化离子周围的水分子堆积更紧。我们计算水合膜的结构因子,并找到1和4 nm -1之间的峰,这是这些材料中离子簇的特征。我们估计水和氢氧化物离子的自扩散系数,发现水分子在所有系统中的扩散量高于氢氧化离子。氢氧化物扩散的趋势与实验电导率测量很好地对齐。对于具有广泛空腔的系统,水促进了通过车辆运输的氢氧化物扩散,并且在空腔狭窄的系统中,观察到离子跳和车辆运输。通过计算离子 - 离子和离子 - 溶剂相关性通过Onsager传输系数框架来量化这一点。关键字:聚合物膜,离子交换,分子动力学模拟,氢氧化物传输,离子体■简介
摘要:随着半导体行业在过去几十年的迅猛发展,其对环境的影响也日益令人担忧,包括淡水的抽取和有害废水的产生。四甲基氢氧化铵 (TMAH) 是半导体废水中不可避免的有毒化合物之一,应在废水排放前去除。然而,很少有经济实惠的技术可以去除半导体废水中的 TMAH。因此,本研究的目的是比较不同的处理方案,如膜电容去离子 (MCDI)、反渗透 (RO) 和纳滤 (NF),用于处理含有 TMAH 的半导体废水。进行了一系列台式实验装置,以研究 TMAH、TDS 和 TOC 的去除效率。结果证实,MCDI 工艺和 RO 一样表现出很强的去除能力,而 NF 在相同的恢复条件下无法充分去除。 MCDI 对包括 TMA+ 在内的一价离子的去除率高于二价离子。此外,在碱性溶液中,MCDI 对 TMA+ 的去除率高于在中性和酸性条件下的去除率。这些结果首次证明了 MCDI 在处理含有 TMAH 的半导体废水方面具有巨大潜力。
由于其高功率密度、环境友好、卓越的充放电能力、长循环寿命和安全性,纳米材料成为最有希望的储能候选材料之一。[4,5] 将纳米材料加工成具有高电导率和良好机械稳定性的独立薄膜对超级电容器具有重要意义。要为高性能超级电容器选择合适的纳米材料,必须考虑卓越的表面特性、固有的高强度和电导率。[6,7] 在寻找能够提供所有这些特性的替代品的过程中,最近发现的二维材料 MXene 显示出巨大的潜力。MXenes 是二维家族中的一种新型候选材料(MXenes 描述为 M n + 1 X n T x ,其中 M、X 和 T x 通常代表早期过渡金属、C 或 N,以及吸附的表面功能团如 OH、 O 和 F,其中 n = 1、2 或 3)。 [8] 2D 过渡金属碳化物和氮化物 MXene(包括 Ti3C2Tx、Mo2CTx 和 V4C3Tx)具有高金属电导率、优异的循环稳定性和丰富的表面化学基团,是超级电容器的优良电极材料。[9] 通过真空辅助过滤制备 MXene 独立膜是实现这些特性的最佳选择。[10] 例如,卷曲的 Ti3C2Tx 薄膜表现出 150 000 S m−1 的高电导率和重量电容