摘要:最近,某些挑战一直存在于pH传感器的应用中,尤其是在使用氧化物(HFO 2)薄膜作为感应层时,其中与敏感性,滞后和长期稳定性障碍性能有关的问题。微波退火(MWA)技术作为解决这些挑战的有前途的解决方案,由于其独特的优势,吸引人的吸引力很大。在本文中,首次研究了使用HFO 2作为传感膜的微波退火(MWA)处理对扩展栅场效应晶体管(EGFET)的传感行为的影响。选择了MWA处理的各种功率水平(1750 W/2100 W/2450 W)以探索最佳处理条件。使用X射线光电学光谱(XPS)和原子力显微镜(AFM)等技术进行了彻底的物理分析,以表征MWA处理的HFO 2传感薄膜的表面。我们的发现表明,MWA处理有效地增加了HFO 2传感薄膜中的表面位点(NS),从而导致EGFET的pH敏感性提高到59.6 mV/pH,并在长期稳定性中降低了滞后和滞后的降低和增强。这些结果表明,MWA提供了一种直接,能量良好的方法来增强EGFET中的总体HFO 2传感效果性能,为HFO 2应用程序提供了见解和更广泛的微电子挑战。
SC820系列是一款隔离式电流检测芯片,采用开环霍尔传感器检测原理,通过将高压侧的电流导线引入封装内,根据电流的磁效应,通过芯片内置的磁传感器感应出被测导线周围产生的等磁场量,转换成可处理的等电压信号,通过内置高精度ADC读数放大,采用数字校准技术,去除温度、噪声、迟滞、非线性等环境变量,最终得到接近理想的被测电流的电压值。
在静磁场(H)下将 Fe 3 O 4 @PVP NPs 与吸收的单体一起混合形成纳米粒子链;(iii)紫外线引发单体凝胶化并在纳米粒子链上形成响应性水凝胶壳。bg pH-RPNR 的表征。Fe 3 O 4 @poly(AA-co-HEA) pH-RPNR 的光学显微镜(b、c)、SEM(d)和 TEM(e)图像、FT-IR 光谱(f)和磁滞回线(g)。b、d 和 e 中的插图描绘了相应的高度放大图像。c 中的插图给出链长分布的直方图。
喷射混凝土必须适合现场运输(泵送)和应用(喷涂)过程。因此,必须获得合适的稠度和流变性以便浇注。本文评估了各种粘度调节剂 (VMA) 对湿混喷射混凝土流变性和触变性的影响。使用了六种 VMA,根据其成分分为三组:基于二氧化硅、层状硅酸盐的添加剂和聚合物添加剂。在砂浆中深入研究了这些流变改性剂,获得了材料的屈服应力 (τ o ) 和塑性粘度 (μ) 的值,以及触变性(滞后面积),它代表了流体结构恢复所需的能量。为了获得这些参数,使用实验室流变仪在动态状态下测试流体,并施加剪切速率斜坡。此外,通过在流动台试验中获得流动台直径来确定砂浆的稠度。该评估是在含有不同含量的高效减水剂 (SP) 的砂浆中进行的。所有这些信息使得评估 SP 与每种 VMA 结合的影响成为可能,获得一个可工作性箱,确定滞后区域并验证哪些组合获得了优于对照混合物(不含 VMA)的流变行为。所述结果与现场进行的喷射混凝土混合物中获得的回弹指数相关。砂浆的触变性和现场的回弹率值导致了最准确的相关性,从而可以选择最有效的 VMA 用于喷射混凝土。最后,两种综合结果(实验室和现场)允许一种有助于设计和优化湿混喷射混凝土的分析过程。
有机场效应晶体管 (OFET) 是有机电子电路的核心单元之一,OFET 的性能在很大程度上取决于其介电层的特性。有机聚合物,如聚乙烯醇 (PVA),由于其固有的柔韧性和与其他有机成分的天然兼容性,已成为 OFET 备受关注的介电材料。然而,诸如滞后、高亚阈值摆幅和低有效载流子迁移率等不尽人意的问题仍然大大限制了聚合物介电 OFET 在高速、低压柔性有机电路中的实际应用。这项工作开发了一种使用超临界 CO 2 流体 (SCCO 2 ) 处理 PVA 介电体的新方法,以获得性能卓越的聚合物介电 OFET。 SCCO 2 处理可以完全消除 OFET 传输特性中的滞后现象,同时还可以显著降低器件亚阈值斜率至 0.25 V/dec,并将饱和区载流子迁移率提高至 30.2 cm 2 V − 1 s − 1 ,这两个数字对于柔性聚合物电介质 OFET 来说都是非常可观的。进一步证明,与有机发光二极管 (OLED) 耦合后,SCCO 2 处理的 OFET 能够在快速开关速度下运行良好,这表明通过这种 SCCO 2 方法可以实现聚合物电介质 OFET 的优异开关行为。考虑到 OFET 的广泛和重要应用,我们预见这种 SCCO 2 技术将在有机电子领域具有非常广泛的应用,尤其是对于高刷新率和低压柔性显示设备。
这是以下文章的同行评审版本:Su,X.,Wu,X.,Chen,S.,Nedumaran,A。M.,Stephen,M.,Hou,K.,K.,Czarny,B。&Leong,W。L.(2022)。一种高度指导的聚合物,可用于自动,可打印和可拉伸的有机电化学晶体管阵列以及接近滞后的软触觉传感器。高级材料,已在https://doi.org/10.1002/adma.202200682上以最终形式出版。本文可以根据Wiley使用自构货币版本的条款和条件来将其用于非商业目的。
第一单元 智能结构 9 0 0 9 智能结构的类型、智能结构的潜在可行性、智能结构的关键要素、智能结构的应用。压电材料、特性、压电本构关系、去极化和矫顽场、场应变关系。磁滞、蠕变和应变率效应、尺蠖直线电机。梁建模:具有诱导应变率效应的梁建模、具有诱导应变的尺蠖直线电机梁建模驱动 - 单执行器、双执行器、纯伸展、纯弯曲谐波激励、伯努利-欧拉梁模型、问题、压电应用。
范围 [1] psig 0–1 0–2 0–5 0–15 正灵敏度 [2] mV/psi 200 ±50 100 +50/-20 60 ±20 20 ±7 综合: 非线性,非重复性, 压力迟滞 [3] % FSO RSS max 1.5 1.5 0.75 0.50 非线性, 独立 % FSO typ 1.5 1.0 0.50 0.20 非重复性 % FSO typ 0.1 0.1 0.1 0.05 压力迟滞 % FSO typ 0.1 0.1 0.1 0.1 零测量输出 [4] mV max ±10 ±10 ±10 ±10 3x 范围后的零点漂移 ±% 3x FSO max 0.2 0.2 0.2 0.2 (典型值) (0.02) (0.02) (0.02) (0.02) 热零点漂移 从 0°F 至 200°F(-18°C 至 +93°C)±% FSO 最大 3 3 3 3 热灵敏度漂移 从 0°F 至 200°F(-18°C 至 +93°C)±% 最大 4 4 4 4 共振频率 Hz 55,000 70 000 85 000 130 000 3x 范围的非线性 % 3x FSO 2.5 2.5 2.0 1.0 每 psi/°F 的热瞬态响应 0.003 0.003 0.003 0.003 ISA-S37.10,第 209 页6.7,程序 I [5] psi/°C 0.005 0.005 0.005 0.005 闪光灯响应 [6] 当量 psi 0.01 0.01 0.03 0.1 预热时间 [7] ms 1 1 1 1 加速度灵敏度 当量 psi/g 0.0002 0.0002 0.0002 0.0002 爆破压力 (隔膜/参考侧) psi min 20/20 40/40 100/50 150/50
TCN75A 产品带有用户可编程寄存器,可为温度传感应用提供灵活性。寄存器设置允许用户选择 9 位至 12 位温度测量分辨率、配置省电关断和单次(关断时按命令进行单次转换)模式以及指定温度警报输出和滞后限值。当温度变化超出指定限值时,TCN75A 会输出警报信号。用户可以选择将警报输出信号极性设置为恒温器操作的低电平有效或高电平有效比较器输出,或设置为基于微处理器的系统的温度事件中断输出。
薄膜无序超导体中的超导体-绝缘体转变 (SIT) 是量子相变的典型例子。尽管 30 多年前就已观察到,但其性质仍在激烈争论中。一个有趣的观察结果涉及转变的绝缘侧,它表现出一些不寻常的特性。其中包括它的电流-电压关系(I-V 曲线),包括 (i) 电导随电压增加而突然改变几个数量级,(ii) 滞后行为,以及 (iii) 转变附近多次(有时超过 100 次)较小的电流跳跃。之前已经提出了一些模型,但没有一个模型能够成功完全解释观察到的行为。一种常用的方法是将无序样本建模为二维导电岛阵列,其中电荷载流子从一个岛隧穿到其相邻岛。在这些模型中,假设快速弛豫,并将系统视为始终处于静电和热平衡状态。这些模型成功地解释了一些测量结果,包括相变本身,但它们无法在预测的 I-V 曲线中重现磁滞现象。在这里,我们建议将有限的松弛时间纳入阵列模型。我们表明,在慢松弛极限下,我们的模型可以重现 I-V 曲线中的磁滞和多次跳跃。根据我们的结果,我们认为在二维正常(非超导)阵列中也应该观察到类似的行为。这一说法得到了过去观察的支持。我们分析了模型中不同参数的作用,确定了问题中相关时间尺度的范围,并将我们的结果与选定的测量值进行了比较。
