第一单元 直流电路:欧姆定律和基尔霍夫定律;独立电压源激励的串联、并联和串并联电路分析;功率和能量;电磁学:法拉第定律、楞次定律、弗莱明规则、静态和动态感应电动势;自感、互感和耦合系数的概念;磁场中储存的能量;磁滞和涡流损耗。第二单元 网络定理:叠加、戴维南和诺顿定理、互易定理、补偿、最大功率传输、特勒根和米尔曼定理、定理在直流和交流电路中的应用。
对可再生能源的需求不断增长,促使风能和水力发电系统的大量研究和发展。风力涡轮机利用了风的动能,而微型涡轮机将流动水的势能转化为机械能。这两种技术在多样化的能量组合和减少对化石燃料的依赖方面都起着至关重要的作用。对这些系统的有效控制对于优化其性能和确保可靠的能量输出至关重要。在风力涡轮机中,风速的变化提出了需要复杂的控制策略以最大化能量捕获并维持系统稳定性的挑战。1比例积分衍生(PID)控制器的实施已被证明有效地调节了转子速度,从而可以调整叶片螺距和偏航角以适应变化的风条件。同样,微型涡轮机受益于高级控制方法,可以有效地管理水流。在这里,PID控制器和磁滞带控制器的组合为维持涡轮速度和防止能量输出波动提供了强大的解决方案。PID控制器根据涡轮机的操作要求调整流量,而磁滞带控制器通过响应不同的水位来最大程度地减少振荡来帮助稳定系统。2,3本文研究了这些控制策略在增强风和微型涡轮机的效率和可靠性方面的应用。4,5通过检查这些技术之间的相互作用,该研究旨在确定风与水力系统整合的最佳实践,最终有助于混合可再生能源解决方案的发展。通过这次探索,本文旨在提高对控制方法的理解,这些方法可以显着影响可再生能源系统在日益持续的能源环境中的性能。
特性和优点 ▪ 低噪声模拟信号路径 ▪ 通过新的 FILTER 引脚设置器件带宽 ▪ 响应阶跃输入电流,输出上升时间为 5 μs ▪ 带宽 80 kHz ▪ 总输出误差 1.5%(TA = 25°C) ▪ 小尺寸、扁平 SOIC8 封装 ▪ 1.2 mΩ 内部导体电阻 ▪ 从引脚 1-4 到引脚 5-8 的最小隔离电压为 2.1 kVRMS ▪ 5.0 V,单电源供电 ▪ 66 至 185 mV/A 输出灵敏度 ▪ 输出电压与交流或直流电流成比例 ▪ 工厂调整精度 ▪ 极其稳定的输出失调电压 ▪ 几乎为零的磁滞 ▪ 与电源电压成比例输出
使用数字万用表测量电解槽。使用给定材料作为电容器内部的介电层来测量其介电常数。使用螺线管研究 CRO 上给定铁磁材料的磁滞回线,并计算给定材料的矫顽力、剩磁和饱和磁化强度。使用亥姆霍兹线圈研究磁场叠加的原理。研究非本征半导体样品中的霍尔效应,并确定霍尔系数和多数电荷载流子的密度。借助棱镜和光谱仪测定玻璃的折射率和柯西常数。使用单缝、双缝、圆形光圈和氦氖激光源研究衍射现象。测定线性晶体的比旋光度
尽管水蒸气吸附于固体自由表面会引起接触角的变化,但对水蒸气影响的研究却很少。1942年Boyd和Livingston[2]以及2007年Ward和Wu[3]指出,水蒸气在自由固体表面的吸附应该会改变接触角,因为γSV会降低。1988年,Yekta-Fard和Ponter[4]测量了当水滴在聚四氟乙烯表面上暴露于环己烷、癸烷或十一烷蒸气时,水的接触角没有变化。几位作者[5]研究了由于吸附有机蒸气引起的水的表面张力的变化。在许多自然现象和工业应用中,水滴在表面的滑动都很重要,例如涂层[6]、能量转换[7]和水收集[8],或者雨中的玻璃或挡风玻璃。在这些情况下,需要区分前进接触角θ a 和后退接触角θ r 。两者之间的差异称为接触角滞后。它可能是由表面异质性、粗糙度或适应性引起的。[9] 接触角滞后很重要,因为它决定了固着液滴的摩擦力:F=kγLVw(cosθr−cosθa)。[2,10] 其中,k≈1 是形状因子,w 是液滴与固体表面接触面积的宽度。尽管取得了令人瞩目的发展,但液滴在表面上的移动机制还远未被理解或控制。在这方面,涂有聚二甲基硅氧烷(PDMS)刷的表面由于其低接触角滞后性而引起了极大兴趣。 [11] 在最近的一篇论文中,我们证明了当系统暴露于甲苯蒸汽时,PDMS 涂层表面上水滴的接触角滞后会进一步减小。[12] 我们通过蒸汽被吸附在 PDMS 层中的润滑作用解释了这种影响。原子力显微镜检测到甲苯蒸汽层厚度增加,支持了这一假设。聚合物刷吸附溶剂蒸汽确实是已知的。[13]
摘要。与传统光学器件相比,可展开光学器件有望通过大幅降低质量和体积需求来达到所需的性能水平,从而彻底改变宇宙观测能力。然而,这对新望远镜的机械和热设计提出了新的要求,本质上是用质量和体积来换取结构和控制的复杂性。我们汇编了设计光学空间系统时应考虑的热机械挑战,并总结了 14 个解决这些挑战的项目。严格的部署重复性要求需要低滞后,而稳定性要求需要高刚度、适当的热管理和主动光学元件。© 2020 光学仪器工程师协会 (SPIE) [DOI: 10.1117/1.JATIS.6.1 .010902 ]
T = Air temperature AH = Absolute humidity b = Mesoscale height ~ 200 m a = Urban canopy height ~ 2-10 m i = Grid land cover type C i = Fractional coverage, sum to 1 H = Sensible energy or heat flux LE = Latent energy or heat flux PLE = Potential LE R n = Net radiation, SW+LW ΔG = Ground heat flux Δt = Time step D = Depression storage on ground S = Interception storage in canopy a 1-3 =客观滞后M r a/b =空气动力阻力r s =表面或气孔抗性λ=汽化的潜热ρW=水的密度c p =特定的热恒定压力
07:30 开始注册 08:45 欢迎致辞 09:00 全体会议 1 09:50 短暂休息 会议 A:能量转换 会议 B:能量存储 10:00 会议 A1:燃料电池系统 会议 B1:磁滞 11:00 茶歇 11:30 会议 A2:PEMFC 电池组 会议 B2:下一代 12:30 午餐休息 13:40 会议 A3:PEMFC 电池 1 会议 B3:电池设计方面 14:50 茶歇 15:10 海报展示 16:40 短暂休息 16:50 会议 A4:PEMFC 电池 2 会议 B4:退化 19:30
