本研究报道了在非常规 Nd 0.8Sr 0.2NiO 2 无限层超导薄膜中,磁场诱导超导体-金属转变 (SMT) 伴随量子格里菲斯奇异性 (QGS) 的出现。该系统在平面和垂直磁场下均表现出各向同性的 SMT 特征。重要的是,在对等温磁阻曲线进行缩放分析后,获得的有效动态临界指数在接近零温临界点 B c 时表现出发散行为,从而识别了 QGS 特性。此外,与 QGS 伴随的量子涨落可以定量解释 SMT 相边界中平面和垂直磁场中上临界场在零温附近上升的现象。这些特性表明 Nd 0.8Sr 0.2NiO 2 超导薄膜中的 QGS 是各向同性的。此外,在较高的磁场下,金属状态的电阻-温度关系 R ð T Þ 在 2 – 10 K 范围内表现出 ln T 依赖性,T 2
Change Log 4 What's new 5 FortiOS 6.4.0 5 Supported RFCs 6 BGP 6 Cryptography 6 DHCP 7 Diffserv 8 DNS 8 ICMP 8 IP 9 IP multicast 9 IPsec 9 IPv4 9 IPv6 10 IS-IS 10 LDAP 11 NAT 11 OSPF 11 PPP 12 RADIUS 12 RIP 12 SFTP 12 SIP 13 SNMP 13 SSH 13 SSL 14 TCP 14 TLS 14 VPN 14无线15其他协议15其他15
•通过更快的充电和更高的持续电压实现延长的运行时间。•通过无维护功率消除停机时间。•以完全的灵活性管理操作 - 在需要时添加新的电源模块,以增加更高容量。*
印度钦奈速度工程学院机械工程系摘要:如今,从非常规能源来收集能量是一种新兴方法。中,太阳能是一个重要的来源,因为它的丰富性,可持续性,多功能性,成本效益和适应性的技术进步。太阳能光伏(PV)细胞具有将太阳辐射转换为电能的能力。但是,由于这种方法固有的光子反射,转化效率大约下降了约30%。光子反射主要基于太阳能电池表面的光学特性和物理特性。为了解决此问题,使用自旋涂层技术使用TIO 2和SIO 2纳米颗粒的组合使用单层和双层抗反射(AR)表面。混合TIO 2 -SIO 2纳米颗粒是通过使用Sol -Gel过程从其前体得出的。采用XRD(X射线衍射)方法来确认TIO 2 -SIO 2纳米材料的化学阶段。已经对涂层的厚度和粗糙度如何影响用抗反射涂层处理的表面的光学特征进行了分析。形态学信息和化学元素浓度是通过FESEM和EDAX分析获得的。已经测量了水接触角,以确保AR表面的疏水性质。由于具有增强的光学特性,AR涂层样品的功率转换效率从17.11%起到18.44%,这是未涂层样品的效率。随后,使用紫外线可见光谱仪用于通过分析其光谱响应(包括反射率,吸光度和带隙能量特性)来检查抗反射涂层的功效。关键字:反射(AR)涂层,XRD,EDAX,FESEM,太阳PV细胞,Tio 2 -Sio 2。
在全球范围内,人类长期以来一直困扰着正在进行的环境污染问题,尤其是关于水污染的问题。被污染的水包含一系列污染物,例如重金属,有机染料和药物,所有这些污染物由于其毒性而对动物和人类构成有害影响。随着干净的水源继续减少,对污染水的有效治疗方法的需求越来越大。响应这种紧迫的需求,纳米技术已成为有前途的途径,并由于其多面应用而引起了全球关注。二氧化钛纳米颗粒(TIO 2 -NP)通常用于日常生活,可以通过多种物理,化学和环保方法合成。值得注意的是,TIO 2 -NP在其高表面积与体积比和通过光催化促进污染物降解的能力而脱颖而出。根据这些进步,这篇评论探讨了TIO 2 -NPS合成及其在废水处理中的环境应用的最新进展。
摘要。Batio 3是钙钛矿结构的最重要功能材料之一,广泛用于电子工业中。但是,Batio 3的介电介电常数仍然相对较低,这极大地限制了其在具有巨大介电介电常数的超材料中的实际应用。在这项工作中,(Ba 100 x Sr X)(Ti 100 Y Zr Y)O 3复合陶瓷是通过实心烧结方法制造的。令人惊讶的是,(ba 100 x Sr x)(ti 100 y zr y)o 3复合陶瓷材料的介电性能分别依赖于A位置和B位置的Sr 2+和Zr 4+的占用。因此,通过调整SRTIO 3和BAZRO 3的掺杂量,介电介电常数为28287(65°C,1 kHz),以及在(ba 90 sr 10)(ba 90 sr 10)中的高分子分解强度为84.47 kV/cm,是在214%的范围内,是214%的13%and 13%,是214%的13%。 (BA 99 SR 1)(Ti 99 Zr 1)O 3复合陶瓷。此外,通过有限的元素模拟确定了介电介电常数显着增加的原因,并探索了复合陶瓷材料的分解机制。这项工作提供了一种构建高介电介电常数复合陶瓷的简便方法,即(BA 100 X SR X)(Ti 100 Y Zr Y)O 3复合陶瓷在电子和静电储能存储电容器方面具有广泛的应用前景。
•使用独特的初级和次要电池管理系统(BMS)确保电池安全性和无缝操作。•通过实时监控持续到潜在的问题,以读取细胞水平的温度和电压。•通过控制器区域网络(CAN)通信与各种叉车模型实现无忧集成。•通过我们耐用的机械结构体验安心。•通过我们的汽车级单元设计确保一致的操作,该电池设计在苛刻的条件下提供可靠性和寿命。
[4-(3,6-二甲基-9H-咔唑-9基)丁基]膦酸 (Me-4PACz) 自组装分子 (SAM) 是解决倒置钙钛矿太阳能电池 (PSC) 中 NiO x 埋层界面问题的有效方法。但 Me-4PACz 端基 (咔唑核心) 不能强制钝化钙钛矿薄膜底部的缺陷。这里采用 Co-SAM 策略来修改 PSC 的埋层界面。Me-4PACz 掺杂氯化磷酰胆碱 (PC) 形成 Co-SAM 以提高单层覆盖率并降低漏电流。PC 中的磷酸基和氯离子 (Cl − ) 可以抑制 NiO x 表面缺陷。同时,PC 中的季铵离子和 Cl − 可以填充钙钛矿薄膜中的有机阳离子和卤素空位,使缺陷钝化。此外,Co-SAM 可以促进钙钛矿晶体的生长,协同解决埋藏缺陷问题,抑制非辐射复合,加速载流子传输,并减轻钙钛矿薄膜的残余应力。因此,Co-SAM 修饰的器件表现出高达 25.09% 的功率转换效率以及出色的器件稳定性,在单太阳照射下运行 1000 小时后,初始效率仍为 93%。这项工作展示了通过修饰 NiO x 上的 Co-SAM 来提高 PSC 性能和稳定性的新方法。
本文档中包含的信息对于安全处理和适当使用Elitra™离子电池电池至关重要。它包含全球系统规范以及相关的安全措施,行为代码,调试和建议维护的指南。必须保留此文档并适用于与电池合作并负责的用户。所有用户都负责确保根据操作期间预期或遇到的条件,确保系统的所有应用程序都是适当且安全的。
变更日志 16 FortiOS CLI 参考 17 命令和选项的可用性 17 命令树 17 CLI 配置命令 19 alertemail 20 配置 alertemail 设置 20 防病毒 27 配置防病毒豁免列表 27 配置防病毒配置文件 28 配置防病毒隔离 58 配置防病毒设置 62 应用程序 64 配置应用程序自定义 64 配置应用程序组 65 配置应用程序列表 66 配置应用程序名称 75 配置应用程序规则设置 77 身份验证 78 配置身份验证规则 78 配置身份验证方案 80 配置身份验证设置 82 自动化 86 配置自动化设置 86 CASB 87 配置 CASB 配置文件 87 配置 CASB SAAS 应用程序 90 配置 CASB 用户活动 91 证书 97 配置证书 ca 97 配置证书 crl 99 配置本地证书 100 配置远程证书 104 直径过滤器 106 配置直径过滤器配置文件 106 dlp 109 配置 dlp 数据类型 109 配置 dlp 字典 110 配置 dlp 精确数据匹配 112 配置 dlp 文件模式 113 配置 dlp fp-doc-source 117 配置 dlp 配置文件 120 配置 dlp 灵敏度 125 配置 dlp 传感器 126