Apple AirDrop 是 Apple 的 iPhone、iPad 和笔记本电脑操作系统(iOS、iPadOS 和 MacOS)中的一项功能,可让用户与附近的其他 Apple 设备无线共享和接收照片、文档、链接和其他数据。它使用蓝牙和 Wi-Fi 在近距离设备之间建立点对点连接,而无需互联网连接。2019 年,AirDrop 的网络安全漏洞被发现并被媒体广泛报道,可能会泄露 AirDrop 发送者和接收者的个人信息。Apple 的系统依靠“散列”加密方法来加密设备上的个人信息。当 AirDrop 开启时,设备会自动扫描附近启用 AirDrop 的设备,并共享这些加密信息以建立连接。网络攻击者可以利用此过程拦截和解密联系信息(例如个人电子邮件地址和电话号码),从而导致隐私泄露和未经授权访问敏感信息。为了应对这一网络安全漏洞,多伦多市于 2019 年禁止所有市政府发行的 Apple 设备使用 AirDrop。Apple 定期发布 AirDrop 更新,包括在 2014 年添加“仅限联系人”设置,允许用户将共享限制为仅已知联系人,而不是默认的“所有人”设置,该设置允许共享到所有附近的 Apple 设备。对于经常将 Apple 设备用于业务并定期添加新联系人的用户,此“仅限联系人”设置仍然可能带来网络和隐私风险,因为他们可能会无意中将自己暴露给试图共享有害文档的恶意行为者。2022 年,Apple 对默认的“所有人”设置引入了时间限制,允许用户通过 AirDrop 被附近的任何 Apple 设备看到的时间只有 10 分钟,之后会恢复为“仅限联系人”(适用于 iPhone 和 iPad,不适用于 Apple 笔记本电脑/台式机)。虽然这些更新有助于减少暴露,但它们并不能消除接收恶意文件或成为网络钓鱼攻击目标的可能性。市政府工作人员于 2024 年 9 月进行的一项网络风险评估证实,同样的风险仍然存在。在撰写本报告时,市政府已与苹果公司进行了沟通,但尚未提供永久修复的时间表。如果苹果公司发布进一步的更新来解决漏洞问题,市政府将在发布时评估每个更新的有效性。
摘要:传统上牙科中使用的抗菌剂的持续和不当使用导致了多重耐药 (MDR) 菌株的出现以及微生物的突变。这一问题导致了多种纳米粒子的开发,以对抗耐药性病原体。二氧化钛 (TiO 2 ) 纳米粒子由于其化学稳定性、无毒且前体廉价而成为有吸引力的抗菌剂。因此,我们探索了 TiO 2 基纳米分散体,通过使用众所周知的抗菌剂(例如次氯酸 (HOCl))来制备它们,以增强抗菌效果。在本研究中,合成并表征了溶胶-凝胶基 TiO 2 NPs-HOCl 纳米分散体。通过培养不同浓度的纳米分散体,使用变形链球菌、金黄色葡萄球菌、粪肠球菌和白色念珠菌菌株通过微量稀释测定来评估抗菌效果。为了评估细胞毒性作用,接种了根尖乳头干细胞 (SCAP),并使用 MTT 测定法进行评估。纳米分散体表现出增强的抗菌作用,几乎没有细胞毒性。基于 HOCl 的纳米分散体表现出更大的抗菌作用和高稳定性。因此,它可以用作治疗各种牙科病原体的有前途的抗菌剂。关键词:TiO 2 纳米粒子、HOCl、抗菌作用、细胞毒性作用、SCAP。
对无限层镍酸盐的研究已经揭示了一个破裂的翻译对称性,这对其根部引起了浓厚的兴趣,与超导性的关系以及与丘比特的电荷顺序的比较。在这项研究中,在无限层Prnio 2+ 𝛿薄膜上进行了谐振X射线散射测量。与PR𝑀5共振在依赖能量,温度和局部对称性的pr𝑀5共振相比,Ni𝐿3吸收边缘在Ni𝐿3吸收边缘处的超晶格反射的显着差异。这些差异指出了两个不同的电荷顺序,尽管它们具有相同的平面内波vector。鉴于在不完全降低的prnio 2+膜中观察到谐振反射,这些差异可能与多余的氧气掺杂剂有关。此外,方位角分析表明,氧配体在Ni𝐿3共振下揭示的电荷调制中可能起关键作用。
摘要。这项研究研究了MGTIO 3钙钛矿材料的电子,光学和结构特性,无论是纯还是掺杂氮(N)和磷(P)等元素。调查利用了WIER2K代码中实现的GGA-MBJ近似值的密度功能理论(DFT)。结果表明,在具有y(n和p)的氧气位置,掺杂mgtio 3的带隙能显着低于纯MGTIO 3的带隙能量,其带隙为2.933 eV。,特别是在n和p的情况下,频带间隙降至1.74和0.65 eV,此外,费米能(EF)水平在P型半导体(SC)中向价带(VB)移动。此外,我们已经分析了这些系统的光学特性,包括它们的介电函数(εଵ和εଶ),光导率(𝜎),吸收系数(α)和折射率(n)。此外,用n和p掺杂会增加可见光光谱中的吸收,这在光照下会提高光催化活性,因为掺杂的材料的价和传导带更容易地产生氢。上面的发现表明,这些材料具有广泛的应用,包括光电设备的创建。
本报告中提出的少量发现在考虑ios iOS应用程序及其加密术的安全性时就可以自身。但是,尽管该应用程序和组件显然是在考虑到安全性的,但Cure53仍然能够发现一些问题,并且建议在实现出色的安全性之前需要解决这些问题。具体来说,这些漏洞之一与解锁密码或密码相关的缺失强度检查有关,并以高严重性对(KEE-01-001)进行排名。建议特别应尽快解决此漏洞。CURE53确定,通过解决和解决此处详细介绍的所有问题,KeepAssium团队将进一步加强iOS的iOS应用程序,并进一步提高其已经非常积极的安全水平。
MG-ION电池(AMIBS)具有良好安全性,低成本和高特定能量的优势,已被认为是一种有希望的能源存储技术。然而,阿米布的性能始终受到缓慢的扩散动力学的限制,以及由高电荷密度Mg2Þ与宿主材料之间的强静电相互作用引起的阴极材料的结构降解。在这里,层状结构化的NiOOH作为碱性电池的传统阴极,最初被证明可以实现质子辅助的Mg-(de)Intercration Intercration Chemistriation,具有高排放平台(0.57 v)中性水解中性水解的化学。从唯一的核心/壳结构中构成的好处,由此产生的NiOOH/CNT阴极达到了122.5 mAh G 1的高容量和长周期稳定性。进一步的理论计算表明,水合Mg 2的结合能更高
将欧洲数字肿瘤网络 (DigiONE) 中医院的常规护理数据整合到观察性医疗结果伙伴关系 (OMOP) 数据库中,揭示了 COVID-19 封锁期间诊断出的新原发性癌症数量和 12 个月生存率的变化 S Theophanous* 1 , H Fenton* 2 , A Lobo Gomes 3 , E Ross 4 , J Thonnard 5 , A Wolf 6 , C Brandts 6 , AL Bynens 7 , G Hall 1 , S Bachir 8 , E Bolton 1 , O Bouissou 4 , D Brucker 6 , S Cheeseman 1 , A Collard 5 , A Dekker 3 , P Galgane Banduge 3 , L Halvorsen 9 , I Kaczmarczyk 10 , D Kadioglu 8 , P Kalendralis 3 , J Khan 11 、P Mahon 2 、T Schneider 6 、L Schumann 6 、A Traverso 12 、A van Maanen 5 、C van Marcke 5 、A Vengadeswaran 8 、J Wörmann 6 、J Yeap 2 、T Yousaf 4 、R McDonald** 2 、E Hallan Naderi** +4 *共同第一作者;**共同最后作者;+通讯作者:elinad@ous-hf.no。1 利兹教学医院 NHS 信托,英国。2 IQVIA Ltd,英国。3 放射肿瘤学系(Maastro)、GROW 肿瘤和生殖研究所、马斯特里赫特大学医学中心+,荷兰。4 奥斯陆大学医院,挪威。5 比利时布鲁塞尔圣吕克大学医院。 6 德国法兰克福大学医院癌症中心。7 荷兰马斯特里赫特大学医学中心。8 德国法兰克福歌德大学医学院医学信息学研究所 (IMI)。9 比利时 edenceHealth NV。10 英国伦敦 IQVIA Ltd OMOP & PPG Solutions。11 印度 IQVIA Ltd。12 意大利米兰 IRCCS 圣拉斐尔医院。
Change Log 6 Introduction and supported models 9 Supported models 9 Special notices 10 IPsec phase 1 interface type cannot be changed after it is configured 10 IP pools and VIPs are not considered local addresses for certain FortiOS versions 10 Support for FortiGates with NP7 processors and hyperscale firewall features 10 Changes in CLI 11 Changes in GUI behavior 13 Changes in default behavior 14 Changes in default values 15 Changes in table size 16 New features or enhancements 17 Upgrade information 30 Fortinet Security Fabric upgrade 30 Downgrading to previous firmware versions 31 Firmware image checksums 32 Strong cryptographic cipher requirements for FortiAP 32 FortiGate VM VDOM licenses 32 VDOM link and policy configuration is lost after upgrading if VDOM and VDOM link have the same name 32 GUI firmware upgrade does not respect upgrade path 33 Product integration and support 34 Virtualization environments 35 Language support 35 SSL VPN支持36 SSL VPN Web模式36解决问题37反垃圾邮件37抗病毒37应用程序控制37数据泄漏预防38端点控制38显式代理38 FIREWALL 38 FORTIVIEW 40 GUI 40 HA 42 HYPERSCALE 42 HYPERSCALE 43 ICAP 44 ICAP 44
M. Vanmathi A,,A。PriyaA,M。S. Tahir A,Sahir A,M。S. Razakh a,M。M. Senthil Kumar B,*,R。Indrajit C,R。Indrajit C,V。Elango D,G。Senguttuvan E,R v. Mangalaraja f。泰米尔纳德邦,印度-600 048 B机械工程学院,Vellore技术研究所,钦奈,泰米尔纳德邦,泰米尔纳德邦,印度-600 127 c物理系印度纳杜(NADU),600 089 E物理学系,安娜大学蒂鲁奇拉帕利大学工程学院毒性。进一步的金属掺杂可改变电导率,电气和光学特性。在这项研究中,使用喷雾热解技术进行了SN掺杂TIO 2的沉积。通过使用Hall效应技术获得了电性能,并通过X射线衍射和EDAX扫描电子显微镜分析膜的结构特性。X射线衍射的结果表明,通过喷雾热解沉积的薄膜是多晶的多晶,在(002)场的方向上优先取向。SEM分析表现出通过喷雾热解沉积的薄膜的膜结构。使用HALL效应技术获得了电导率的结果。(2024年6月7日收到; 2024年9月26日接受)关键词:二氧化钛(TIO 2),X射线衍射,扫描电子显微镜(SEM),Hall效果1。今天的引言,众所周知,大多数半导体使用二氧化钛纳米颗粒[1]。TiO 2在传感器[2],抗菌剂[3],氢[4],照片催化剂[5]和水蒸发[6]中找到了其应用。tio 2以其良好的光学特性,廉价,无毒和化学稳定而闻名。
有机无机杂交光催化剂用于水分割的利用引起了显着的关注,因为它们能够结合两种材料的优势并产生协同效应。但是,由于对这两个组成部分之间的相互作用以及其准备过程的复杂性的相互作用有限,它们仍然远非实际应用。在此,通过将糖化的共轭聚合物与TIO 2-x介孔球相结合,以制备高效率杂种杂种光催化剂。与亲水性寡醇(乙二醇)侧链的共轭聚合物的功能不仅可以促进结合聚合物在水中的分散体,而且还可以促进与TIO 2 -X形成稳定的异质结纳米颗粒的相互作用。在35.7 mmol H-1 g-1的365 nm时,在PT共同催化剂存在下,氢的量子产率为53.3%,氢的演化速率为35.7 mmol H-1 g-1。基于飞秒瞬态吸收光谱和原位分析的高级光物理研究,XPS分析揭示了II型异质结接口处的电荷转移机制。这项工作表明了糖化聚合物在构建用于光催化氢生产的杂交异质结中的前景,并深入了解了这种异质结光催化剂的高光催化性能。