背景:这项研究旨在研究miR-497-5p在胃癌(GC)及其可能的机制中的表达和生物学作用。方法:进行实时定量PCR(RT-QPCR),以检测GC和正常组织中的miR-497-5p,以及GC细胞系与正常的胃粘膜细胞(GES-1)(GES-1)。通过计数KIT-8(CCK8)测定和溴化乙锭(EDU)测定法测量了miR-497-5p过表达对增殖的影响。流式细胞仪用于评估细胞周期。分别通过刮擦分析和Transwell分析评估迁移和入侵。MiR-497-5p的基因靶标使用与MirtarPathway数据库结合使用的“ Multimir” R软件包。,然后使用Luciferase Reporter实验来评估GC细胞系中miR-497-5p Mimics的ERBB2活性。此外,还进行了功能实验,以验证miR-497-5p /erbb2对GC细胞表型的影响。结果:与正常组织和粘膜细胞相比,GC组织和GC细胞系中miR-497-5p降低。miR-497-5p显着降低了增殖,迁移和侵袭能力,胃癌细胞的凋亡比升高。生物信息学表明,ERBB2可能是miR-497-5p双酸酶酶报告基因实验的潜在靶标,表明它不良调节的ERBB2 3'UTR荧光素酶活性。与正常组织和细胞相比,GC组织和细胞中ERBB2的表达明显更高。胃癌细胞中ERBB2的过表达显着降低了miR-497-5p对GC细胞恶性行为的抑制作用。结论:MiR-497-5p在GC组织和细胞中显着下调,这通过靶向ERBB2抑制了GC细胞的恶性特征。
摘要背景与目的在美国,卡博替尼被批准用于治疗年龄≥12岁的放射性碘难治性分化型甲状腺癌 (DTC) 患者,这些患者在接受血管内皮生长因子 (VEGFR) 靶向治疗后病情出现进展,这是基于 III 期 COSMIC-311 试验,该试验评估了卡博替尼 60 mg/天与安慰剂的疗效。对于成人和年龄≥12 岁且体表面积 (BSA) ≥1.2 m 2 的儿童患者,批准剂量为 60 mg/天,对于年龄≥12 岁且 BSA < 1.2 m 2 的儿童患者,批准剂量为 40 mg/天。本报告描述了 COSMIC-311 的群体药代动力学 (PopPK) 和暴露-反应分析。方法使用来自 COSMIC-311 和其他 6 项卡博替尼研究的浓度-时间数据建立 PopPK 模型。最终的 (完整的) PopPK 模型用于模拟性别、体重、种族和患者人群的影响。对于暴露-反应分析,构建了来自 COSMIC-311 的数据集,用于无进展生存期 (PFS) 和安全性终点的事件发生时间分析。结果 PopPK 分析包括来自 1745 名患者和健康志愿者的 4746 个卡博替尼 PK 样本。体重对卡博替尼暴露量的影响很小,但体重增加与表观分布容积增加有关。根据基于模型的模拟,体重 < 40 公斤的青少年在卡博替尼 60 毫克/天稳态下的最大血浆浓度高于成年人。体重 < 40 公斤的青少年的异速缩放模拟显示,与接受相同剂量的成年人相比,60 毫克/天的暴露量更高,而体重 < 40 公斤的青少年 40 毫克/天的暴露量与成年人 60 毫克/天的暴露量相似。暴露-反应分析包括 115 名患者。PFS 或剂量调整与卡博替尼暴露之间没有明确的关系。卡博替尼暴露与高血压 (≥ 3 级) 和疲劳/乏力 (≥ 3 级) 之间存在统计学上显着的关系。结论这些结果支持 COSMIC-311 中实施的给药策略和基于 BSA 的青少年标签建议。应根据指示减少卡博替尼剂量以控制不良事件。
杰斐逊数字共享将这篇文章带给您免费和开放访问。Jefferson Digital Commons是Thomas Jefferson大学教学中心(CTL)的服务。Commons是杰斐逊书籍和期刊的展示,经过同行评审的学术出版物,大学档案馆的独特历史收藏以及教学工具。Jefferson Digital Commons允许研究人员和感兴趣的读者在世界任何地方学习并与Jefferson奖学金保持最新状态。本文已被杰斐逊数字共享的授权管理员接受,以纳入药理学和实验治疗学院的教师论文。有关更多信息,请联系:jeffersondigitalcommons@jefferson.edu。
1。共享的Linux环境,创建生物信息学管道的合作。2。高性能计算(HPC)群集,快速光泽存储。3。用于组织数据流的数据管理系统(DMS)。4。处理自动化工具以自动启动管道。5。课程(git,linux,hpc,snakemake)用于使用环境。
背景:帕金森氏病(PD)是一种神经退行性疾病,其为特征,其特征在于黑质Nigra Pars Compacta(SNPC)中多巴胺能神经元的丧失。这项研究的重点是破译MicroRNA(MIR)-101A-3P在PD神经元损伤及其调节机制中的作用。方法:我们通过腹膜内注射1-甲基4-苯基1、2、3、6-四氢吡啶(MPTP)构建了PD的小鼠模型,并使用了1-甲基-4-苯基 - 苯基吡啶二吡啶(MPP +)来处理神经2A细胞以构建神经-2A细胞以构建一个模型。通过游泳测试和牵引测试评估小鼠的神经功能障碍。QRT-PCR用于检查小鼠脑组织和Neuro-2a细胞中的miR-101a-3p表达和Rock2表达。蛋白质印迹,以检测小鼠脑组织和神经2A细胞中α-突触核蛋白蛋白和岩石2的表达。通过双雷酸酶报告基因测定法测定miR-101a-3p和Rock2之间的靶向关系。通过流式细胞仪评估神经2a细胞的凋亡。结果:在PD小鼠的脑组织和MPP +治疗的神经2A细胞的脑组织中发现了低miR-101a-3p表达和高岩石表达; PD小鼠的神经系统疾病降低,MPP +治疗后神经2A细胞的凋亡增加,这两者都伴随着α-突触核蛋白蛋白的积累增加。,改善了PD小鼠的神经功能,并减少了由MPP +诱导的神经2A细胞的凋亡,并减少了α-核蛋白蛋白的积累; Rock2的过表达抵消了miR-101a-3p的保护作用。另外,Rock2被确定为miR-101a-3p的直接靶标。结论:miR-101a-3p可以通过抑制Rock2表达来减少PD小鼠中神经元细胞凋亡和神经缺陷,这表明miR-101a-3p是PD的有希望的治疗靶标。
脑电图(EEG)信号在临床医学,脑研究和神经系统障碍研究中是关键的。然而,它们对生理和环境噪声受到污染的敏感性挑战了大脑活动分析的精度。深度学习的进步已经产生了抑制传统方法的欧EEG信号降解技术。在这项研究中,我们部署了保留网络体系结构(用于大型语言模型(LLMS)),用于EEG DENOSINGISENT,利用其强大的功能提取和全面的建模实力。此外,其固有的时间结构对准使保留网络特别适合EEG信号的时间序列性质,为其采用提供了额外的理由。为了将保留网络与EEG信号的一维特征相吻合,我们引入了一种信号嵌入策略,将这些信号重塑为有助于网络处理的二维嵌入空间。这种前卫方法不仅雕刻出EEG DENO的新型轨迹,还增强了我们对脑功能的理解和诊断神经系统疾病的准确性。此外,为了响应深度学习数据集的劳动密集型创建,我们提供了一个标准化的,预处理的数据集,该数据集准备简化该领域中的深度学习进步。
摘要:银屑病是一种慢性炎症性皮肤病,其特征是角质形成细胞过度增殖和免疫激活增强。通过小干扰 RNA(siRNA)疗法针对致病基因代表了治疗银屑病的一种有前途的策略。这篇小型综述全面总结了针对银屑病发病机制的 siRNA 研究,涵盖角质形成细胞功能、炎症细胞作用、临床前动物研究和 siRNA 递送机制等方面。它详细介绍了 RNA 干扰的最新进展,这些研究调节关键因素,包括角质形成细胞增殖(成纤维细胞生长因子受体 2,FGFR2)、细胞凋亡(干扰素 α 诱导蛋白 6,G1P3)、分化(粒头样转录因子 2,GRHL2)和血管生成(血管内皮生长因子,VEGF);免疫细胞浸润和炎症(肿瘤坏死因子-α,TNF-α;白细胞介素-17,IL-17);以及控制免疫病理学的信号通路(JAK-STAT,核因子 κB,NF-κB)。尽管 siRNA 靶向治疗银屑病取得了重大进展,但仍存在一些挑战。持续的科学发展有望创造出更有效、更安全的 siRNA 药物,有可能提高银屑病患者的生活质量并彻底改变其他疾病的治疗方法。本文重点介绍使用 siRNA 靶向银屑病发病机制的最新研究进展,并探讨其未来的治疗前景。关键词:银屑病、siRNA、角质形成细胞、靶向递送
引言类风湿关节炎(RA)是一种常见的自身免疫性疾病,其特征是软骨和骨骼的持续关节炎症和破坏(1,2)。越来越多的证据表明,MES-盖膜干细胞(MSC)具有与自身免疫性和炎症性疾病(包括自身免疫性关节炎)作斗争的潜力(3-10)。但是,临床实践中出现了一些问题。例如,患者的MSC通常功能失调,使同种异体MSC转移成为唯一的选择,这可能会引发免疫排斥。此外,患者转移的MSC的长期细胞命运仍然在很大程度上不清楚。也有常见的副作用,包括细胞毒性和肿瘤发生(11-13)。有效的免疫治疗取决于精确的靶向和有效的免疫调节。当前涉及免疫抑制剂的RA治疗方案通常需要高剂量的药物以在
1夏威夷大学的生物化学,解剖学和生理学系,美国HI 96822,HINOLULU,MANOA; ninapa@hawaii.edu(n.p.a.); brennany@hawaii.edu(B.Y.Y。); bradenku@hawaii.edu(B.P.K.); cknunoka@hawaii.edu(C.K.L.N。); nrubas@hawaii.edu(N.C.R.); rkwells@hawaii.edu(R.K.W.); umedal@hawaii.edu(l.u.); kritphan@hawaii.edu(K.P.); torres91@hawaii.edu(A.T。); peres@hawaii.edu(R.P。)2分子生物科学和生物工程,热带农业与人力资源学院,夏威夷大学,檀香山Manoa,Hi 96822,美国3美国3号放射学系,哈佛医学院,波士顿,波士顿,马萨诸塞州,美国马萨诸塞州02115; emi.oki@mgh.harvard.edu 4 Athinoula A. Martinos生物医学成像中心,马萨诸塞州马萨诸塞州查尔斯敦,马萨诸塞州,美国马萨诸塞州02129 *通信:amaunake@hawaii.edu;电话。: +1-808-956-9282
心脏纤维化是各种心脏疾病(例如高血压,冠心病和心肌病)的重要病理表现,它也是心力衰竭的关键联系。先前的研究证实了运动可以增强心脏功能并改善心脏纤维化,但是分子靶标仍然不清楚。在这篇综述中,我们介绍了miR-126在心脏保护中的重要作用,并发现它可以调节TGF-β /SMAD3信号传导途径,抑制心脏纤维细胞转差分,并减少胶原纤维的产生。最近的研究表明,细胞分泌的外泌体可以通过外泌体携带的microRNA通过细胞间通信起特定的作用。心脏内皮祖细胞衍生的外泌体(EPC-EXOS)携带miR-126,运动训练不仅可以增强外泌体的释放,而且可以上调miR-126的表达。因此,通过推导和分析,可以通过上调miR-126在EPC-EXOS中的表达来抑制TGF-β /SMAD3信号传导途径,从而削弱了心脏纤维细胞中的心脏纤维细胞中的肌纤维。本评论总结了通过调节外泌体来改善心脏纤维化的特定练习途径,该外泌体为锻炼提供了新的想法,以促进心血管健康。