摘要。沉浸式虚拟现实 (iVR) 采用头戴式显示器或类似洞穴的环境来创建感官丰富的虚拟体验,模拟用户在数字空间中的物理存在。该技术在神经科学研究和治疗中具有巨大的前景。特别是,虚拟现实 (VR) 技术促进了各种任务和场景的开发,这些任务和场景与现实生活情况密切相关,以在受控和安全的环境中刺激大脑。当传统刺激方法有限或不可行时,它还提供了一种经济有效的解决方案,为用户提供类似的交互感。虽然由于信号干扰或仪器问题,将 iVR 与传统脑成像技术相结合可能很困难,但最近的研究提出了将功能性近红外光谱 (fNIRS) 与 iVR 结合使用,以实现多功能脑刺激范式和灵活检查脑反应。我们对采用 iVR-fNIRS 设置的当前研究进行了全面回顾,涵盖设备类型、刺激方法、数据分析方法和主要科学发现。文献表明,iVR-fNIRS 在完全沉浸式 VR (iVR) 环境中探索各种认知、行为和运动功能方面具有巨大潜力。此类研究应为自适应 iVR 程序奠定基础,用于培训(例如,在新环境中)和临床治疗(例如,疼痛、运动和感觉障碍以及其他精神疾病)。
2.3. 安装................................................................................................................................ 39
摘要。沉浸式虚拟现实 (iVR) 采用头戴式显示器或类似洞穴的环境来创建感官丰富的虚拟体验,模拟用户在数字空间中的物理存在。该技术在神经科学研究和治疗中具有巨大的前景。特别是,虚拟现实 (VR) 技术促进了各种任务和场景的开发,这些任务和场景与现实生活情况密切相关,以在受控和安全的环境中刺激大脑。当传统刺激方法有限或不可行时,它还提供了一种经济有效的解决方案,为用户提供类似的交互感。虽然由于信号干扰或仪器问题,将 iVR 与传统脑成像技术相结合可能很困难,但最近的研究提出了将功能性近红外光谱 (fNIRS) 与 iVR 结合使用,以实现多功能脑刺激范式和灵活检查脑反应。我们对采用 iVR-fNIRS 设置的当前研究进行了全面回顾,涵盖设备类型、刺激方法、数据分析方法和主要科学发现。文献表明,iVR-fNIRS 在完全沉浸式 VR (iVR) 环境中探索各种认知、行为和运动功能方面具有巨大潜力。此类研究应为自适应 iVR 程序奠定基础,用于培训(例如,在新环境中)和临床治疗(例如,疼痛、运动和感觉障碍以及其他精神疾病)。
摘要:严肃游戏,包括沉浸式虚拟现实 (iVR) 体验,对于玩家来说可能具有挑战性,因为他们不熟悉控制系统和机制。本研究重点是设计一个 iVR 严肃游戏的游戏化教程,不仅可以教授 iVR 交互,还可以提高用户的享受度和参与度。教程由逐渐具有挑战性的迷你游戏组成,这些迷你游戏可以适应用户的表现。如果用户遇到困难或犯错,机器人化身会提供提示和建议。教程中还包含一个可选的叙述来增强用户参与度,但这对于 iVR 体验来说并不是必需的。教程中融入了积分收集和进度更新等游戏化元素。它可以独立玩,也可以作为 iVR 严肃游戏的介绍。目标是使用游戏化原则来保持用户参与度和流畅度,同时增强虚拟世界中的学习体验。
摘要 目前,由于眼动追踪技术的低侵入性及其与商用 iVR 头戴式显示器的集成,在沉浸式虚拟现实 (iVR) 学习环境中使用眼动追踪数据将成为最大化学习成果的有力工具。然而,在将数据处理技术推广到学习环境之前,应首先确定最合适的技术。在本研究中,提出了使用机器学习技术来达到此目的,评估它们对学习环境质量进行分类和预测用户学习表现的能力。为此,开发了一种模拟桥式起重机操作的 iVR 学习体验。通过这次体验,对 63 名学生在最佳学习条件和压力条件下的表现进行了评估。最终的数据集包括 25 个特征,主要是时间序列,数据集大小高达 50M 个数据点。结果表明,不同的分类器(KNN、SVM 和随机森林)在预测学习表现变化时提供了最高的准确率,而用户学习表现的准确率仍远未达到最佳水平,这为未来的研究开辟了一条新思路。本研究旨在为未来使用复杂的机器学习技术提高模型准确率奠定基础。