AI可以帮助使任务更易于管理,但保持隐私也是必不可少的。除非达成签署的数据共享协议,否则不应将个人身份的学生信息(PII)输入AI工具,并且应遵守所有学生隐私法。许多AI工具需要18岁以下的用户父母同意。与学生一起使用AI工具时,请记住
成年肠是一个区域化器官,其大小和细胞组成是根据营养状态调整的。这涉及肠道干细胞(ISC)增殖和分化的动态调节。Nu-Trient信号如何控制细胞命运决策以驱动细胞类型组成的区域变化尚不清楚。在这里,我们表明肠道营养适应涉及细胞大小,细胞数和分化的区域特异性控制。我们发现MTOR复合物1(MTORC1)的激活以特定于区域的方式增加了ISC的大小。mTORC1活性促进了三角洲表达,将细胞命运引导到吸收性肠细胞谱系,同时抑制分泌的肠肠分离细胞分化。在老化的苍蝇中,ISC MTORC1信号被解剖,组成型高且对饮食无反应,可以通过终身间歇性禁食来缓解这种饮食。总而言之,MTORC1信号传导有助于ISC命运决策,从而使肠道细胞分化的区域控制对营养。
在这里,我们描述了一种新型,有效和选择性的口服生物可利用的小分子TSHR拮抗剂的概念证明数据,该分子TSHR拮抗剂直接靶向TSHR功能,可用于治疗坟墓疾病的表现,包括潜在的眼科表现。使用原代小鼠甲状腺细胞确定小分子化合物SP-1351的体外药理作用。表明,TSH和患者衍生的自身抗体对原代胆红素的功能基因表达产生刺激作用。通过长期激活自身抗体的施用,建立了甲状腺功能亢进症的体内鼠模型。该模型的表征表明,与甲状腺功能亢进相关的关键基因被上调,循环T3和T4的水平失调,甲状腺本身的总体大小显着增加,反映了坟墓疾病的影响。用小分子负构构调节剂重复治疗10天,降低了甲状腺的总体大小,并改善了与Graves疾病(如卵泡肥大和卵泡胶体还原)相关的组织学参数。在T4诱导的急性小鼠模型中,口服SP-1351的口服给予治疗后的T4水平迅速减弱。
印第安纳州的 SSIP 最初是通过与印第安纳州教育部 (IDOE) 外联部和州发展网络 (SDN) 合作实施的,作为学校改进的一部分。该计划最初旨在增加系统协调,并开始在三个站点学校内安装基于证据的实践选择。在实施的第二年,印第安纳州的州教育机构基础设施发生了重大变化,这导致最初开发的 SSIP 团队调查重组后的 IDOE 内的合作伙伴关系。最初的 SSIP 团队讨论了与学校/学区所做的工作,并讨论了有关 SSIP 的选项,包括印第安纳州 SiMR、ToA、逻辑模型(参见附录 A)和 SSIP 的整体实施。核心团队专注于建立内部和外部合作伙伴关系,以确保与提高三年级识字能力相关的协调和专业知识。ToA 保持不变,因为系统协调、MTSS/UDL 和基于循证实践 (EBP) 的早期识字是实现 SiMR 的基础组成部分。使用这些组件实现 SiMR 的途径需要持续关注数据并进行有效分析,以确保持续的质量改进。州团队和利益相关者不懈努力,开发了一个系统,以实现 ToA 中设定的目标:支持包容性实践,确保公平和机会,从而改善印第安纳州每个学生的成绩。
虽然印第安纳州内容连接器建立了对知识和技能的关键期望,并且应将其用作课程的基础,但内容连接器本身并不构成课程。当地学校公司有责任选择并正式采用与印第安纳州内容连接器保持一致的课程工具,包括教科书和任何其他补充材料。此外,公司和学校领导者应考虑内容连接器的适当教学顺序以及教每个人所需的时间长度。每个内容连接器在学习的连续性中都有一个独特的位置,但是每个内容连接器都不需要相同的时间和关注。对标准的垂直表达的深刻理解将使教育工作者能够做出最佳的教学决定。这些内容连接器还必须通过强大的基于证据的教学实践来补充,以支持整体学生发展。通过利用战略和有意的教学实践,可以将其他领域(例如STEM和就业能力)与内容连接器集成在一起。
20 世纪 90 年代,美国国家教育目标小组将学习方法是儿童入学准备的重要组成部分。学习方法通常指儿童如何处理任务/活动以及如何学习的行为和态度。学习方法包括好奇心、解决问题、保持注意力和坚持不懈等特征。这些学习行为有助于加强和促进儿童在其他入学准备领域的学习。事实上,研究表明,学习方法是儿童入学准备的一个独特方面,是他们以后在学校取得成功的有力预测因素。具有积极学习方法的孩子在学业上表现更好,与他人的互动也更富有成效。虽然其中一些技能似乎对一些孩子来说是与生俱来的,但研究人员认为,其他技能可以通过支持性的高质量学习环境来培养和发展。
虽然印第安纳州内容连接器建立了对知识和技能的关键期望,并且应将其用作课程的基础,但内容连接器本身并不构成课程。当地学校公司有责任选择并正式采用与印第安纳州内容连接器保持一致的课程工具,包括教科书和任何其他补充材料。此外,公司和学校领导者应考虑内容连接器的适当教学顺序以及教每个人所需的时间长度。每个内容连接器在学习的连续性中都有一个独特的位置,但是每个内容连接器都不需要相同的时间和关注。对标准的垂直表达的深刻理解将使教育工作者能够做出最佳的教学决定。这些内容连接器还必须通过强大的基于证据的教学实践来补充,以支持整体学生发展。通过利用战略和有意的教学实践,可以将其他领域(例如STEM和就业能力)与内容连接器集成在一起。
ldoe形成性评估资源,以支持课堂上的形成性评估,该部门发布了与路易斯安那州科学学生标准相关的离散项目和项目集库。这些项目以及2025年的LEAP练习测试项目可以与高质量课程的指导一起使用,作为学生证明自己学到的知识的机会。ldoe形成性评估资源可以在K-12科学资源网页上找到。
抽象背景微生物必须对其环境变化做出反应。分析函数的鲁棒性(即性能稳定性)这种动态扰动在实验室和工业环境中都引起了极大的兴趣。最近,一种能够评估各种功能的鲁棒性的定量方法,例如在不同条件,时间范围和种群中为在96孔板中生长的微型ISM开发了各种功能的鲁棒性。在微静电板中,环境变化缓慢且未定义。动态微型单细胞培养(DMSCC)实现了微环境的精确维护和操纵,同时使用活细胞成像随着时间的推移跟踪单细胞。在这里,我们将DMSCC和鲁棒性量化方法结合在一起,以评估在几秒钟或几分钟内发生变化的性能稳定性。结果,酿酒酵母CEN.PK113-7D,具有用于细胞内ATP水平的生物传感器,暴露于葡萄糖盛宴饥饿周期,每种状况在20小时内持续1.5至48分钟。开发并应用了半自动图像和数据分析管道,以评估种群,亚种群和单细胞分辨率的各种功能的性能和鲁棒性。我们观察到特定生长速率的降低,但振荡间隔更长的细胞内ATP水平增加。持续48分钟振荡的细胞表现出最高的平均ATP含量,但随着时间的流逝,稳定性最低,在人群中的异质性最高。结论所提出的管道使随着时间的时间和种群内的动态环境中的功能稳定性进行了研究。该策略允许并行化和自动化,并且很容易适应新的生物,生物传感器,培养条件和振荡频率。对微生物对不断变化环境的反应的见解将指导应变开发和生物处理优化。关键词酿酒酵母,种群异质性,动态环境,尺度降低,生物传感器,活细胞成像,微流体单细胞培养,营养振荡