基于电阻开关存储器(也称为忆阻器或 RRAM)的新型计算架构已被证明是解决深度学习和脉冲神经网络能源效率低下问题的有前途的方法。然而,电阻开关技术尚不成熟,存在许多缺陷,这些缺陷通常被认为是人工神经网络实现的限制。尽管如此,可以利用合理的可变性来实现高效的概率或近似计算。这种方法可以提高稳健性、减少过度拟合并降低特定应用(如贝叶斯和脉冲神经网络)的能耗。因此,如果我们将机器学习方法适应电阻开关存储器的固有特性,某些非理想性可能会成为机会。在这篇简短的评论中,我们介绍了电路设计的一些关键考虑因素和最常见的非理想性。我们通过成熟的软件方法示例说明了随机性和压缩的可能好处。然后,我们概述了利用电阻开关存储器的缺陷的最新神经网络实现,并讨论了这些方法的潜力和局限性。
摘要:技术接受模型(TAM)是一个著名的后现代思想,它解释了人类如何采用和使用新技术。该模型侧重于从最终用户的角度影响使用新技术的行为意图的变量。本研究的目的是基于从 182 名罗马尼亚幼儿园教师收集的数据,使用计划行为理论框架,构建一份可行的问卷,用于评估幼儿园教师在 ECEC 在线教学中的技术接受度。我们在 ECEC 技术采用中对计划行为理论的应用非常出色,其中 66% 解释了课堂上实际使用技术的方差。研究文献支持以下发现:使用技术的意图和对技术的良好态度是实际使用技术的最重要决定因素。虽然需要在更大、更复杂的样本中进行更多研究来证实这些发现,但有令人信服的证据表明,预测方法可用于预测幼儿园教师的技术接受水平,并协助教育决策者设计及时的干预措施,以提高成功的机会。该研究的主要发现指出了一些关键变量,这些变量可能有助于国家教育决策者改善 ECEC 的技术采用。关键词:技术接受模型、早期儿童教育和保育、量表可靠性。如何引用:Rad, D., Egerau, A., Roman, A., Dughi, T., Balas, E., Maier, R., Ignat, S., & Rad, G. (2022)。对早期儿童教育和保育中的技术接受模型 (TAM) 的初步调查。BRAIN。人工智能和神经科学的广泛研究,13 (1),518-533。https://doi.org/10.18662/brain/13.1/297
其中 ¯E 和 ω 分别是状态 i 和 j 的平均能量和能量差。矩阵 R ij 由无规则的一阶数组成,这些数在统计上具有零均值和单位方差。在任何具有固定哈密顿量的给定量子系统中,它们都是通过对哈密顿量进行对角化获得的确定数。然而,对于计算高能态简单算子的少点相关函数而言,这些微观细节是无关紧要的,将 R ij 视为真随机变量即可。这种随机性与量子混沌系统与随机矩阵理论之间的联系紧密相关(详情见[3])。通过全息对偶性,引力物理学对混沌量子系统随机性有了新的认识[4]。如果手头的混沌量子系统是一个大 N 、强耦合的共形场论(即全息 CFT),边界量子系统的热化与引力对偶中的黑洞形成有关 [ 5 – 8 ] 。事实上,这两个过程中明显的幺正性丧失是密切相关的,理解其中一个将有助于理解另一个。事实上,正是出于这个原因,量子热化已经在全息摄影的背景下进行了讨论(例如参见 [ 9 – 20 ] )。
其中 ¯E 和 ω 分别是状态 i 和 j 的平均能量和能量差。矩阵 R ij 由无规则的一阶数组成,这些数在统计上具有零均值和单位方差。在任何具有固定哈密顿量的给定量子系统中,它们都是通过对哈密顿量进行对角化获得的确定数。然而,对于计算高能态简单算子的少点相关函数而言,这些微观细节是无关紧要的,将 R ij 视为真随机变量即可。这种随机性与量子混沌系统与随机矩阵理论之间的联系紧密相关(详情见[3])。通过全息对偶性,引力物理学对混沌量子系统随机性有了新的认识[4]。如果手头的混沌量子系统是一个大 N 、强耦合的共形场论(即全息 CFT),边界量子系统的热化与引力对偶中的黑洞形成有关 [ 5 – 8 ] 。事实上,这两个过程中明显的幺正性丧失是密切相关的,理解其中一个将有助于理解另一个。事实上,正是出于这个原因,量子热化已经在全息摄影的背景下进行了讨论(例如参见 [ 9 – 20 ] )。
初步沟通 基于人工智能的车载自动列车障碍物距离估计 Ivan ĆIRIĆ*、Milan PAVLOVIĆ、Milan BANIĆ、Miloš SIMONOVIĆ、Vlastimir NIKOLIĆ 摘要:本文提出了一种新方法,利用图像平面单应性矩阵来改进对摄像机和成像物体之间距离的估计。该方法利用两个平面(图像平面和铁轨平面)之间的单应性矩阵和一个人工神经网络,可根据收集的实验数据减少估计误差。SMART 多传感器车载障碍物检测系统有 3 个视觉传感器——一个 RGB 摄像机、一个热成像摄像机和一个夜视摄像机,以实现更高的可靠性和稳健性。虽然本文提出的方法适用于每个视觉传感器,但所提出的方法是在热成像摄像机和能见度受损场景下进行测试的。估计距离的验证是根据从摄像机支架到实验中涉及的物体(人)的实际测量距离进行的。距离估计的最大误差为 2%,并且所提出的 AI 系统可以在能见度受损的情况下提供可靠的距离估计。 关键词:人工神经网络;自动列车运行;距离估计;单应性;图像处理;机器视觉 1 简介 通过遵循自动化趋势,可以大大提高铁路货运的质量和成本竞争力,以实现经济高效、灵活和有吸引力的服务。今天,自动化和自主操作已经在公路、航空和海运中变得普遍。现代港口拥有自动导引车 (AGV),可将集装箱从起重机运送到轨道旁、仓库、配送中心,而自动驾驶仪是航空公司和大型货船的标准配置,不需要大量机上人员。自动驾驶汽车和卡车的发展已经进入了一个严肃的阶段。此外,轨道交通自主系统的发展主要出现在公共交通服务领域(无人驾驶地铁线路、轻轨交通 (LRT)、旅客捷运系统和自动引导交通 (AGT))。基本思想是使用一定程度的自动化,将操作任务从驾驶员转移到列车控制系统(例如 ERTMS)。根据国际电工委员会 (IEC) 标准 62290-1,列车自主运行 (ATO) 是高度自动化系统的一部分,减少了驾驶员的监督 [1]。对于完全自主的列车运行,列车操作员的所有活动和职责都需要由多个系统接管,这些系统可以感知环境并俯瞰现场,检测列车路径上的潜在危险物体并做出相应的正确反应 [2-6]。障碍物检测系统作为 ATO 系统的主要部分,障碍物检测系统需要根据货运特定和一般用例(例如 EN62267 和/或自动化领域的相关项目)来监控环境。为了满足严格的铁路标准和法规,障碍物检测系统 (ODS) 应在具有挑战性的环境和恶劣的能见度条件下工作。ODS 是一种具有硬件和软件解决方案的机器视觉系统(图 1),用于提供有关铁路上和/或其附近障碍物的可靠信息,并估算从系统到检测到的障碍物的距离 [7]。该系统需要实时运行,并在不同的光照条件下运行(白天、
您是如何投资 Trustly 的?您现在对这家公司有什么计划?Nordic Capital 之前拥有一家名为 Bambora 的公司。Bambora 是基于一家大型北欧银行的平台分拆而来的。这是一家全渠道信用卡收单公司,业务遍及 70 个不同的市场,到 2017 年以 15 亿欧元的价格卖给 Ingenico Group 时,每年管理的交易量超过 550 亿欧元。如今,对信用卡计划以及像 Bambora 这样的公司来说,最大的威胁是现代技术,它可以通过将资金直接从一个账户转移到另一个账户来绕过信用卡价值链。因此,在 Bambora 退出后的一周,我们联系了 Trustly 的管理团队和所有者,他们认识到 Nordic Capital 是一家经验丰富的支付投资者,我们可以帮助该公司成为全球领导者。这就是我们达成这笔交易的方式。从那时起,我们支持完成两项附加收购,一项在美国,一项在欧洲,以确保 Trustly 获得全球领导地位。我们非常积极主动,因为我们认为 Bambora 面临的最大挑战是什么。问
2018 年《21 世纪综合数字体验法案》(IDEA,法案)公法 (P.L.) 115- 336 要求创建或重新设计公共网站或数字服务的行政机构除其他事项外,还应确保网站、基于网络的表格或数字服务易于使用、残障人士可访问并通过行业标准的安全连接提供。“服务”是指机构及其合作伙伴在客户获取、接收或使用公开发行或遵守政策的整个过程中提供的所有帮助。在这种情况下,服务是 DOI 网站和数字服务。IDEA 法案发起人、众议员 Ro Khanna 总结道:“政府的存在是为了服务公民,该法案确保政府利用现有技术来提供
本文件由 VP Bank AG(以下简称“银行”)编制,并由 VP Bank Group 旗下公司分发。本文件不构成购买或出售金融工具的要约或邀请。其中包含的建议、评估和声明代表 VP Bank AG 相关分析师在文件中所述发布日期的个人意见,可能随时更改,恕不另行通知。本文件基于来自可靠来源的信息。尽管在编制本文件及其包含的评估时已尽最大努力,但不能保证其内容完全准确和完整。特别是,本文件中的信息可能不包含与本文所述金融工具或其发行人有关的所有相关信息。有关本文件中所述金融工具的风险、VP Bank Group 的特征、与这些金融工具相关的利益冲突处理以及本文件分发的其他重要信息,请访问 https://www.vpbank.com/legal_notice_en
用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。