STRING数据库(版本11.0)是描述和展示各种蛋白质之间相互作用的主要来源,涵盖约2460万种蛋白质和来自5.09万个生物体的超过31亿种相互作用。首先,我们将重叠基因上传到STRING网站,并以最小相互作用评分>0.4(低置信度)作为显著阈值。然后下载蛋白质-蛋白质相互作用(PPI)的TSV格式文件,用Cytoscape软件构建PPI网络。随后,利用Cytoscape自带的分子复合物检测(MCODE)和STRING应用程序对显著的基因模块(簇)进行分类,这些基因模块在PPI网络中具有高度互联的簇。MCODE中的参数采用默认设置。对基因模块中的基因进行药物-基因相互作用分析。
phalaenopsis兰花是全球流行的观赏植物。33个有效的多重基因组编辑工具在Phalaenopsis中的应用将极大地加速34兰花基因功能和育种研究的发展。在这项研究中,我们建立了35个快速,方便的原始原子质体平台,用于识别36个功能基因组编辑工具。两种多重基因组编辑工具PTG-CAS9(PTG,37个Polycistronic TRNA GRNA)和PTGM-CAS9(具有改进的38个SGRNA结构的PTG-CAS9系统)的系统旨在编辑四个目标位置的商业phalaenopsis 39 ST166的PDS基因。我们发现,PTG-CAS9和PTGM-CAS9系统在Phalaenopsis中均具有40个功能,并且具有改性SGRNA的PTGM-CAS9系统具有比PTG-CAS9系统高41个编辑效率。此外,我们设计了另一种多重42基因组编辑工具,称为DPⅱ-CPF1系统(双Pol II启动子驱动CPF1核酸内核酸酶和CRRNA的43个表达),以编辑四个44个44个目标位点的phaenopsis的PDS基因。所有四个目标均通过DPⅱ-CPF1系统有效地编辑,而45总突变率约为PTGM-CAS9系统的3倍。使用Phalaenopsis Protoplast平台一起使用了46个,我们成功地建立了两个47个有效的多路复用基因组编辑工具,用于Phalaenopsis研究,PTGM-CAS9和48DPⅱ-CPF1。本研究中建立的多重基因组编辑工具在有效地构建大规模敲除突变库中具有巨大的49个应用潜力。51
一项研究暗示了自噬1(AMBRA1)的蛋白质过表达(AMBRA1),这是自噬的关键调节剂,促进了胆管癌的细胞浸润和预后不良(15)。与此同时,一种变性淋巴瘤激酶(ALK)是一种调节正常细胞发育中涉及的信号传导途径的酪氨酸激酶受体,是固体肿瘤中常见的肿瘤基因之一,包括非小细胞肺癌(NSCLC)和神经细胞母细胞瘤(16-19)。crizotinib是一种特异性结合与碱酪氨酸激酶结构域的抑制剂,可导致抑制下游信号通路(20)。crizotinib已被批准为ALK -ADACDACDER NSCLC的标准一线治疗。尽管已经报道了胆道癌的ALK过表达,但ALK融合,特别是AMBRA1- ALK仍未报告。此外,关于克唑替尼在GBC携带ALK重排或过表达的GBC有效性的报告仍然有限。在这里,通过使用NGS,我们发现了对Crizotinib具有出色治疗反应的GBC患者的新型AMBRA1- ALK融合。
一项全基因组关联研究 (GWAS) 的荟萃分析确定了八个与心率变异性 (HRV) 相关的基因座,但这些基因座中的候选基因仍未得到表征。我们开发了基于图像和 CRISPR/Cas9 的流程,系统地表征活斑马鱼胚胎中 HRV 的候选基因。在转基因表达平滑肌细胞 GFP 的斑马鱼 (Tg[ acta2:GFP ]) 的卵子中同时靶向六个人类候选基因的九个斑马鱼直系同源物,以使跳动的心脏可视化。在受精后 2 天和 5 天,对 381 个活的完整斑马鱼胚胎中的心房跳动进行 30 秒重复记录的自动分析突出显示了影响 HRV 的基因( hcn4 和 si:dkey-65j6.2 [KIAA1755] );心率( rgs6 和 hcn4 );以及窦房停顿和骤停风险( hcn4 )。暴露于 10 或 25 µM 伊伐布雷定(HCN 的开放通道阻断剂)24 小时后,在受精后 5 天,剂量依赖性地导致 HRV 升高和心率降低。因此,我们的筛选证实了已确定的心率和节律基因(RGS6 和 HCN4)的作用;表明伊伐布雷定可以降低斑马鱼胚胎的心率并增加 HRV,就像在人类中一样;并突出了一个在 HRV 中发挥作用的新基因(KIAA1755)。
1 温州医科大学附属眼科医院眼视光学院、卫生部视觉科学国家重点实验室、浙江省眼视光重点实验室,浙江省温州市,2 美国马里兰州贝塞斯达美国国立卫生研究院国家糖尿病、消化和肾脏疾病研究所分子生物学实验室,3 北京生命科学研究所,4 浙江省温州市温州医科大学附属第二医院和育英儿童医院,5 美国宾夕法尼亚州费城费城儿童医院雷蒙德·G·佩雷尔曼细胞与分子治疗中心,6 浙江省温州市温州医科大学基因组医学研究所,7 中国科学院遗传与发育生物学研究所植物细胞与染色体工程国家重点实验室和基因组编辑中心,北京
图 1:情绪的成分模型。在这个框架中,情绪被认为是不同过程同时(或连续)参与的结果,这些过程负责对特定事件的评估以及行为和身体反应。根据 Scherer 及其同事提出的成分过程模型 (CPM),我们的研究中从中定义了情绪特征,五个不同的功能成分正在动态激活并相互作用以构成情绪体验,包括处理事件背景信息的评估机制、促进目标导向行为和认知的动机机制、体现身体反应的运动表达和生理变化,以及可能反映编码有意识情绪意识的新兴成分的主观感受。
基于循环肿瘤 DNA (ctDNA) 的分子分析正在通过多基因下一代测序 (NGS) 面板在晚期癌症患者的临床实践中迅速获得关注。然而,临床结果仍然描述不详,需要通过对血浆 ctDNA 中检测到基因组改变的患者进行个性化治疗来进一步验证。在这里,我们描述了通过 ctDNA 液体活检检测 InVisionFirst ® -Lung 在血浆中发现可操作改变的致癌成瘾晚期 NSCLC 患者的结果、3 个月时的疾病控制率 (DCR) 和无进展生存期 (PFS)。对 81 名晚期 NSCLC 患者进行了汇总回顾性分析,这些患者具有预测对目前 FDA 批准药物有反应的所有类型的改变:致敏常见 EGFR 突变(78%,n = 63)和 T790M(73%,46/63)、ALK / ROS1 基因融合(17%,n = 14)和 BRAF V600E 突变(5%,n = 4)。所有患者均通过先前的组织基因组分析确认了液体活检中检测到的可操作驱动改变,并且所有患者都接受了个性化治疗。在接受匹配靶向治疗的 82 名患者中,10% 为一线患者,41% 为二线患者,49% 为二线以上患者。 73% (46/63) 的患者在 TKI 复发时被检测到获得性 T790M,所有潜在患者 (34/46) 均根据 ctDNA 结果开始奥希替尼治疗。81 名可评估患者的 3 个月 DCR 为 86%。中位 PFS 为 14.8 个月 (12.1-22.9 个月)。基线 ctDNA 等位基因驱动基因分数与个性化治疗的反应率无关 (p = 0.29)。ctDNA 分子分析是一种准确可靠的工具,可用于检测晚期 NSCLC 患者中临床相关的分子改变。靶向治疗的临床结果支持将基于扩增子的 NGS ctDNA 分析液体活检用于晚期 NSCLC 患者的一线和复发检测。
特征选择、层次聚类和差异表达分析确定了细胞类型标记基因。将其他感兴趣的目标与细胞类型标记列表相结合,得到总共 500 个基因。BD WTA-to- poly( A ) 流程选择了基因列表的主要转录本变体,并创建了终止于 poly( A ) 位点的转录本最后 1,000 个碱基的 FASTA 文件。FASTA 文件输入到 BD Genomics Resource 上的引物设计工具中。引物设计流程通过评估各种因素(例如熔化温度、扩增子长度、引物兼容性和目标特异性)输出一组引物。由此产生的定制 500 基因面板包含细胞类型标记和与肾脏生理学和器官重塑有关的感兴趣的基因的组合。
气候信息和服务(CIS)为人们和组织提供了及时,量身定制的与气候相关的信息和工具,它们可以用来减少气候变化的影响,包括对生活的影响;生计和财产。cis在长期和短期时间内支持更好的政策,计划和决策,国家和社区规模。
NCBI数据库2中的1个登录号[KDA] 3 EMPAI值表达基于质谱的蛋白质丰度定量,并根据http://wwwww.matrixscience.com/help/quant_empai_empai_help.html计算。