引言:尽管怀孕是一种生理状况,但糖尿病激素的分泌,例如生长激素,皮质激素释放激素,胎盘乳酸激素,催乳素和孕激素从胎盘中的分泌可能导致硫酸耐药性(IR)。在代谢综合征,肥胖和类型1&2糖尿病中,观察到Kynurenine途径(KP)向IDO激活的转变。IDO的激活也导致芳基烃受体(AHR)和白介素6(IL-6)的激活,这也可能引起某些作用,例如胰岛素抵抗,β细胞功能不全和糖原生成增加。我们假设在GDM患者中会观察到IDO和某些KP酶的过度激活,其方式与代谢综合征,前糖尿病和糖尿病患者类似。方法:包括50例患者和50例对照,他们包括塞尔库克大学医学院的内分泌学院诊所。血清triptophan代谢物水平。结果:在被诊断为GDM的患者组中,色氨酸和KYNA值较低(P <0.001和P <0.001,重新显而易见)。与对照组相比,患者组的Kyn,3-OH AA,3-OH-KYN和KTR的水平明显更高(p = 0.008,p <0.001,p = 0.05和p <0.001)。结论:了解GDM患者中这种途径中发生的变化可能会提供对疾病发展的见解。此外,这些测试也可以用作妊娠糖尿病的补充测试,这可以有助于诊断和患者随访。关键字:OGTT,妊娠糖尿病,色氨酸 - 京难是途径
fi g u r e 1示意图,描绘了大鼠,小鼠和人CD8 + CD45RC低/ - treg的作用机理和标记的机理。Breg,调节B细胞;共同的,共刺激分子; DC,树突状细胞; EC,内皮细胞; IDO,吲哚胺2,3-二氧酶; Kyn,Kynurenin; MREG,调节巨噬细胞; PDC,浆细胞类动物树突状细胞; TRP,色氨酸。 弯曲的箭头表示转换或诱导。 上下箭头分别表示增加和减少Breg,调节B细胞;共同的,共刺激分子; DC,树突状细胞; EC,内皮细胞; IDO,吲哚胺2,3-二氧酶; Kyn,Kynurenin; MREG,调节巨噬细胞; PDC,浆细胞类动物树突状细胞; TRP,色氨酸。弯曲的箭头表示转换或诱导。上下箭头分别表示增加和减少
接种 COVID-19 疫苗后中风相关因素:全州分析 Fadi Nahab MD、Rana Bayakly MPH、Mary Elizabeth Sexton MD、MSc、Manet Lemuel-Clarke NP、Laura Henriquez NP、Srikant Rangaraju MD、Moges Ido MD、MS、MPH
对促进特定效果的因素的充分理解仍然难以捉摸。在JCI,Watne等人的这一问题中。报告了来自586例住院或不del妄的患者的配对血清和脑脊液(CSF)样品的多机构研究结果。div> de妄的主题具有较高浓度的QA和其他KP活性产物(4)。作者提出,全身性炎症激活吲哚胺2,3二氧酶(IDO),可以通过干扰素信号诱导,并在多种细胞中表达,包括驻留在大脑中的细胞。kp活性,该酶在肝脏中表达,并由糖皮质激素和胰高血糖素诱导。IDO和TDO酶活性促进了免疫调节KP的TRP,从理论上讲,在褪黑激素和5-羟色胺途径的代谢中较少可用,它们分别是睡眠和情绪不可或缺的。IDO和TDO酶活性增加了Kyn水平,可以在CSF中测量,CSF是核内脑浓度的代理指标。结果表明血清和CSF水平与del妄的存在相关,引入了很容易获得的血清d妄生物标志物的可能性(4)。只有一个分析的时间点限制了Watne等人的解释。研究(4),从而损害了关于KP活动和del妄之间关系的问题。但是,应考虑到这些技术只能在脑实质中大致近似浓度。解决此问题将需要通过多血清血液和CSF绘制或使用CNS植入的微透析导管或腰部排水管来进行纵向评估。解释研究结果的另一个限制因素是研究结果是相关的
摘要:全球范围内正在进行重大的能源转型。这主要是由风能和太阳能等可变能源的引入所驱动。为了保证能源供应满足需求,储能技术将在整合这些间歇性能源方面发挥重要作用。电池可以提供每日能量存储。然而,在抽水蓄能不是可行解决方案的情况下,仍然没有能够提供每周、每月和季节性储能服务的技术。在此,我们介绍了一种基于等温空气压缩/减压和深海压缩空气储存的创新储能方案。等温深海压缩空气储能 (IDO-CAES) 的安装容量成本估计为 1500 至 3000 美元/千瓦,储能成本估计为 1 至 10 美元/千瓦时。IDO-CAES 应作为电池的补充,在未来的可持续能源网中提供每周、每月和季节性的储能周期,特别是在沿海地区、岛屿和海上和浮动风力发电厂以及深海采矿活动中。
简单摘要:在这项研究中,我们专注于从母牛的脂肪组织中获得间充质干细胞(MSC)并研究其特征和功能。我们从健康的母牛中收集了脂肪组织样品,并使用了特定方法来分离MSC。我们测试了细胞形成菌落,生长和分裂,在细胞表面表达干细胞标记,分化为骨和脂肪细胞的能力,并产生一种称为吲哚胺2,3-二氧酶(IDO)的物质,有助于调节免疫系统。结果表明,MSC从母牛的脂肪组织中成功分离出来,这些脂肪组织可以长期在培养中生长和扩展。MSC还分泌了大量的IDO,表明它们有可能调节免疫系统和控制炎症。这项研究对牛业具有重要意义,因为它表明自体(来自同一个人)源自脂肪组织的MSC可以用作对牛的各种疾病的补充治疗。与常规治疗相比,这些MSC可以通过解决与常见牛疾病相关的炎症和组织疤痕相比提供额外的好处。本研究中使用的方法可以由兽医疗法实验室采用,以准备MSC,以管理来自同一个人或其他捐助者的牛的疾病。
案例演示:患者1(一个13岁的女孩)通常在学期出生。抗磷脂综合征使她的妊娠复杂化,持续的呕吐是通过多种药物进行的,包括吡ido醇(每天40毫克)。出生后6小时发生癫痫发作,对毒药没有反应。但是,两天后,当吡ridoxine(每天40毫克)施用时,它们停止了。她继续服药,并推迟了早期里程碑。在18个月时停用苯巴酮,在8岁时增加吡啶多醇每天增加到100毫克。她能够加入普通学校并表现良好。患者2(一个12岁的男孩)在学期正常分娩。出生后10小时开始癫痫发作,他立即获得了40毫克的吡啶多毒素。癫痫发作就受到了控制,他经历了延迟的里程碑。7岁时,每天增加到每天100毫克。他目前不在五年级,患有阅读障碍。整个外显子组测序(WES)表明,患者1和2均具有ALDH7A1(NM_001202404:外显子12:C.1168G> C;(P.Gly390arg))中新型的纯合错义变体)。
头足类动物在无脊椎动物中以认知能力、适应性伪装、新颖结构和通过 RNA 编辑重新编码蛋白质的倾向而引人注目。然而,由于缺乏遗传上可处理的头足类模型,这些创新背后的机制尚不清楚。CRISPR-Cas9 等基因组编辑工具允许在不同物种中进行定向突变,以更好地将基因和功能联系起来。一种新兴的头足类模型 Euprymna berryi 产生大量胚胎,这些胚胎可以在其整个生命周期中轻松饲养,并且具有已测序的基因组。作为原理证明,我们在 E. berryi 中使用 CRISPR-Cas9 来靶向色氨酸 2,3 双加氧酶 (TDO) 基因,色氨酸 2,3 双加氧酶 (TDO) 是形成色素色素所需的酶,色素色素是头足类动物眼睛和色素细胞中的色素。将靶向 tdo 的 CRISPR-Cas9 核糖核蛋白注射到早期胚胎中,然后培养至成年。出乎意料的是,注射的标本是有色的,尽管通过对注射动物 (G0s) 进行测序验证了目标位点的插入缺失。经过多代繁殖的 TDO 纯合敲除系也有色。令人惊讶的是,E. berryi 中也存在编码吲哚胺 2,3 双加氧酶 (IDO) 的基因,该酶在脊椎动物中催化与 TDO 相同的反应。使用 CRISPR-Cas9 对 tdo 和 ido 进行双敲除产生了白化表型。我们展示了这些白化病在双光子显微镜对大脑中的 Ca 2+ 信号进行体内成像中的实用性。这些数据表明,制造基因敲除头足类动物系的可行性,可用于对这些行为复杂的生物体的神经活动进行实时成像。